Skull of Smallest Known Dinosaur Found in 99-Million-Year Old Amber

By Lars Schmitz, Jingmai Kathleen O'Connor
Editor's Note from The Conversation, July 28, 2020: This article was based on a study published in the peer-reviewed journal Nature on March 11, 2020. On July 22, 2020, the journal retracted the article after other researchers raised concerns that the skull belonged to a lizard, not a bird. Here is the retraction note from the paper's authors: "We, the authors, are retracting this Article to prevent inaccurate information from remaining in the literature. Although the description of Oculudentavis khaungraae remains accurate, a new unpublished specimen casts doubts upon our hypothesis regarding the phylogenetic position of HPG-15-3."
In 2016, our colleague Xing Lida held up a small piece of polished, deeply yellow amber. As sunlight shone through the ancient resin, Lida saw the outline of a pristinely preserved, amazingly small skull. There was a prominent eye socket, a dome-shaped crown of the head, a long, tapering snout and even small teeth. It was bird-like, but in a strange and ancient way.
The amber contains the skull of Oculudentavis khaungraae, a newly described dinosaur and one of the smallest ever discovered. Its tiny stature is forcing paleontologists to rethink the lower limits of body size in birds, and the nearly 100-million-year-old fossil is challenging the current understanding of when and how dinosaur giants shrank into the birds of today.
A Mysterious Transformation
Tiny Oculudentavis may have occupied a unique ecological niche in the ancient world. Han Zhixin / CC BY-ND
The evolutionary transition of dinosaurs to modern birds is one of the most astounding transformations in the history of life: large, bipedal and mostly carnivorous dinosaurs morphed into small, flying birds. Famous discoveries like Archaeopteryx and more recently the fossils from the Jehol Biota in China have given researchers some hints about the process. But finds from this evolutionary phase — which researchers think began about 200 million years ago — are rare.
Paleontologists are far from having a complete picture of the evolution of birds, and even farther from a full inventory of Earth's ecosystems in the age of dinosaurs. Our research on the tiny Oculudentavis, published in the journal Nature, adds valuable information to the puzzle of when, how and to what extent dinosaurs shrank.
Clues in Bone
This high-resolution scan allowed us to see the intricacies of a bone structure unlike any before seen in birds or dinosaurs. Xing Lida / CC BY-ND
Our team needed to see the minute details of the skull, and we needed to do it without cracking or ruining the specimen - a difficult task with a skull encased in 99-million-year old amber from Myanmar. To do that, we scanned the skull with high-resolution X-rays and created a digital model with very fine anatomical detail. What emerged was a picture of an overall bird-like anatomy. But in some interesting ways, Oculudentavis is unlike any bird or dinosaur that has ever been found.
The obvious curiosity of the fossil is its size: Oculudentavis rivaled the smallest bird living today, the bee hummingbird, and likely was no more than 1.6 inches (4 centimeters) from beak to tail. We considered whether the skull possibly belonged to a very young animal, but the extent and pattern of bone growth and the proportional size of the eye pointed to a mature bird.
With a total skull length of just about 0.6 inches (1.5 centimeters), Oculudentavis pushes against what is considered the lower limit of size in birds: the head still had to hold functional eyes, a brain and jaws. The small size is especially surprising if one considers that Oculudentavis lived during the same time as giant plant-eating dinosaurs like Argentinosaurus.
Small and Specialized
The small size of Oculudentavis is striking, but to a trained eye there are other extremely unusual features, too.
First of all, the skull seems to be built for strength. The bones show an unusual pattern of fusion and the skull lacks an antorbital fenestra, a small hole often found in front of the eye.
The eyes of Oculudentavis also surprised us. The shape of the bones found within the eye, the scleral ossicles, suggests that it probably had conical eyes with small pupils. This type of eye structure is especially well adapted for moving around in bright light. While daytime activity might be expected for an ancient bird from the age of dinosaurs, the shape of the ossicles is entirely distinct from any other dinosaur and resembles those of modern-day lizards.
Adding to the list of unexpected features, the upper jaw carries at least 23 small teeth. These teeth extend all the way back beneath the eye and are not set in deep pockets, an unusual arrangement for most ancient birds. The large number of teeth and their sharp cutting edges suggest that Oculudentavis was a predator that may have fed on small bugs.
The sum of these traits — a strong skull, good eyesight and a hunter's set of teeth — suggests to us that Oculudentavis led a life previously unknown among ancient birds: it was a hummingbird-sized daytime predator.
One of the Earliest and Tiniest Birds?
Placing Oculudentavis in the tree of life is, given its strange anatomy, challenging. Our phylogenetic analysis — the investigation of its relationships to other dinosaurs — identifies Oculudentavis as one of the most ancient birds. Only Archaeopteryx branched off earlier.
Scientists consider the nectar-feeding hummingbirds — which appeared 30 million years ago — the smallest dinosaurs on record. But if our placement of Oculudentavis holds true, the miniaturization of dinosaurs may have peaked far earlier than paleontologists previously thought. In fact, the largest and the smallest dinosaurs may have walked and flown the same earth nearly 100 million years ago.
Our work demonstrates how little scientists know about the little things in the history of life. Scientists' snapshot of fossil ecosystems in the dinosaur age is incomplete and leaves so many questions unanswered. But paleontologists are eager to take on these questions. What other tiny species were out there? What was their ecological function? Was Oculudentavis the only visually guided bug hunter? To better understand the evolution of the diversity of life we need more emphasis and recognition of the small.
Amber holds strong potential to fill that gap. Maybe one day a scientist will hold up another piece, and let sunshine reveal a complete Oculudentavis, or even a previously unknown species. More finds in amber will help illuminate the world of the tiny vertebrates in the age of dinosaurs.
Reposted with permission from The Conversation.
- Mass Extinction Event 2 Billion Years Ago Killed 99% of Life on ... ›
- Giant, Possibly Carnivorous Parrot Fossils Discovered in New Zealand ›
- World's Second-Largest Egg Found in Antarctica Probably Hatched Giant Ancient Reptile - EcoWatch ›
- Modern Medical Techniques Reveal Malignant Cancer in 77-Million Year-Old Dinosaur Bone - EcoWatch ›
- Groundbreaking Fossil Shows Prehistoric 15-Foot Reptile Tried to Eat 12-Foot Reptile - EcoWatch ›
- New Dinosaur Fossils Could Belong to Largest Creature to Walk on Earth - EcoWatch ›
- New Chameleon Species May Be World’s Smallest Reptile - EcoWatch ›
Butterflies across the U.S. West are disappearing, and now researchers say the climate crisis is largely to blame.
- New Clues Help Monarch Butterfly Conservation Efforts - EcoWatch ›
- Monarch Butterflies Will Be Protected Under Historic Deal - EcoWatch ›
EcoWatch Daily Newsletter
California faces another "critically dry year" according to state officials, and a destructive wildfire season looms on its horizon. But in a state that welcomes innovation, water efficacy approaches and drought management could replenish California, increasingly threatened by the climate's new extremes.
- Remarkable Drop in Colorado River Water Use Sign of Climate ... ›
- California Faces a Future of Extreme Weather - EcoWatch ›
Trending
Wisdom the mōlī, or Laysan albatross, is the oldest wild bird known to science at the age of at least 70. She is also, as of February 1, a new mother.
<div id="dadb2" class="rm-shortcode" data-rm-shortcode-id="aa2ad8cb566c9b4b6d2df2693669f6f9"><blockquote class="twitter-tweet twitter-custom-tweet" data-twitter-tweet-id="1357796504740761602" data-partner="rebelmouse"><div style="margin:1em 0">🚨Cute baby alert! Wisdom's chick has hatched!!! 🐣😍 Wisdom, a mōlī (Laysan albatross) and world’s oldest known, ban… https://t.co/Nco050ztBA</div> — USFWS Pacific Region (@USFWS Pacific Region)<a href="https://twitter.com/USFWSPacific/statuses/1357796504740761602">1612558888.0</a></blockquote></div>
The Science Behind Frozen Wind Turbines – and How to Keep Them Spinning Through the Winter
By Hui Hu
Winter is supposed to be the best season for wind power – the winds are stronger, and since air density increases as the temperature drops, more force is pushing on the blades. But winter also comes with a problem: freezing weather.
Comparing rime ice and glaze ice shows how each changes the texture of the blade. Gao, Liu and Hu, 2021, CC BY-ND
Ice buildup changes air flow around the turbine blade, which can slow it down. The top photos show ice forming after 10 minutes at different temperatures in the Wind Research Tunnel. The lower measurements show airflow separation as ice accumulates. Icing Research Tunnel of Iowa State University, CC BY-ND
How ice builds up on the tips of turbine blades. Gao, Liu and Hu, 2021, CC BY-ND
While traditional investment in the ocean technology sector has been tentative, growth in Israeli maritime innovations has been exponential in the last few years, and environmental concern has come to the forefront.
theDOCK aims to innovate the Israeli maritime sector. Pexels
<p>The UN hopes that new investments in ocean science and technology will help turn the tide for the oceans. As such, this year kicked off the <a href="https://www.oceandecade.org/" target="_blank" rel="noopener noreferrer">United Nations Decade of Ocean Science for Sustainable Development (2021-2030)</a> to galvanize massive support for the blue economy.</p><p>According to the World Bank, the blue economy is the "sustainable use of ocean resources for economic growth, improved livelihoods, and jobs while preserving the health of ocean ecosystem," <a href="https://www.sciencedirect.com/science/article/pii/S0160412019338255#b0245" target="_blank" rel="noopener noreferrer">Science Direct</a> reported. It represents this new sector for investments and innovations that work in tandem with the oceans rather than in exploitation of them.</p><p>As recently as Aug. 2020, <a href="https://www.reutersevents.com/sustainability/esg-investors-slow-make-waves-25tn-ocean-economy" target="_blank" rel="noopener noreferrer">Reuters</a> noted that ESG Investors, those looking to invest in opportunities that have a positive impact in environmental, social and governance (ESG) issues, have been interested in "blue finance" but slow to invest.</p><p>"It is a hugely under-invested economic opportunity that is crucial to the way we have to address living on one planet," Simon Dent, director of blue investments at Mirova Natural Capital, told Reuters.</p><p>Even with slow investment, the blue economy is still expected to expand at twice the rate of the mainstream economy by 2030, Reuters reported. It already contributes $2.5tn a year in economic output, the report noted.</p><p>Current, upward <a href="https://www.ecowatch.com/-innovation-blue-economy-2646147405.html" target="_self">shifts in blue economy investments are being driven by innovation</a>, a trend the UN hopes will continue globally for the benefit of all oceans and people.</p><p>In Israel, this push has successfully translated into investment in and innovation of global ports, shipping, logistics and offshore sectors. The "Startup Nation," as Israel is often called, has seen its maritime tech ecosystem grow "significantly" in recent years and expects that growth to "accelerate dramatically," <a href="https://itrade.gov.il/belgium-english/how-israel-is-becoming-a-port-of-call-for-maritime-innovation/" target="_blank" rel="noopener noreferrer">iTrade</a> reported.</p><p>Driving this wave of momentum has been rising Israeli venture capital hub <a href="https://www.thedockinnovation.com/" target="_blank" rel="noopener noreferrer">theDOCK</a>. Founded by Israeli Navy veterans in 2017, theDOCK works with early-stage companies in the maritime space to bring their solutions to market. The hub's pioneering efforts ignited Israel's maritime technology sector, and now, with their new fund, theDOCK is motivating these high-tech solutions to also address ESG criteria.</p><p>"While ESG has always been on theDOCK's agenda, this theme has become even more of a priority," Nir Gartzman, theDOCK's managing partner, told EcoWatch. "80 percent of the startups in our portfolio (for theDOCK's Navigator II fund) will have a primary or secondary contribution to environmental, social and governance (ESG) criteria."</p><p>In a company presentation, theDOCK called contribution to the ESG agenda a "hot discussion topic" for traditional players in the space and their boards, many of whom are looking to adopt new technologies with a positive impact on the planet. The focus is on reducing carbon emissions and protecting the environment, the presentation outlines. As such, theDOCK also explicitly screens candidate investments by ESG criteria as well.</p><p>Within the maritime space, environmental innovations could include measures like increased fuel and energy efficiency, better monitoring of potential pollution sources, improved waste and air emissions management and processing of marine debris/trash into reusable materials, theDOCK's presentation noted.</p>theDOCK team includes (left to right) Michal Hendel-Sufa, Head of Alliances, Noa Schuman, CMO, Nir Gartzman, Co-Founder & Managing Partner, and Hannan Carmeli, Co-Founder & Managing Partner. Dudu Koren
<p>theDOCK's own portfolio includes companies like Orca AI, which uses an intelligent collision avoidance system to reduce the probability of oil or fuel spills, AiDock, which eliminates the use of paper by automating the customs clearance process, and DockTech, which uses depth "crowdsourcing" data to map riverbeds in real-time and optimize cargo loading, thereby reducing trips and fuel usage while also avoiding groundings.</p><p>"Oceans are a big opportunity primarily because they are just that – big!" theDOCK's Chief Marketing Officer Noa Schuman summarized. "As such, the magnitude of their criticality to the global ecosystem, the magnitude of pollution risk and the steps needed to overcome those challenges – are all huge."</p><p>There is hope that this wave of interest and investment in environmentally-positive maritime technologies will accelerate the blue economy and ESG investing even further, in Israel and beyond.</p>- 14 Countries Commit to Ocean Sustainability Initiative - EcoWatch ›
- These 11 Innovations Are Protecting Ocean Life - EcoWatch ›
- How Innovation Is Driving the Blue Economy - EcoWatch ›