
By Elizabeth Claire Alberts
In 1997, Charles Moore was sailing a catamaran from Hawaii to California when he and his crew got stuck in windless waters in the North Pacific Ocean. As they motored along, searching for a breeze to fill their sails, Moore noticed that the ocean was speckled with "odd bits and flakes," as he describes it in his book, Plastic Ocean. It was plastic: drinking bottles, fishing nets, and countless pieces of broken-down objects.
"It wasn't an eureka moment … I didn't come across a mountain of trash," Moore told Mongabay. "But there was this feeling of unease that this material had got [as] far from human civilization as it possibly could."
Captain Charles Moore looking at a piece of floating plastic in the ocean. Algalita Marine Research and Education
Moore, credited as the person who discovered what's now known as the Great Pacific Garbage Patch, returned to the same spot two years later on a citizen science mission. When he and his crew collected water samples, they found that, along with larger "macroplastics," the seawater was swirling with tiny plastic particles: microplastics, which are defined as anything smaller than 5 millimeters but bigger than 1 micron, which is 1/1000th of a millimeter. Microplastics can form when larger pieces of plastics break down into small particles, or when tiny, microscopic fibers detach from polyester clothing or synthetic fishing gear. Other microplastics are deliberately manufactured, such as the tiny plastic beads in exfoliating cleaners.
"That's when we really had the eureka moment," Moore said. "When we pulled in that first trawl, which was outside of what we thought was going to be the center [of the gyre], and found it was full of plastic. Then we realized, 'Wow, this is a serious situation.'"
Captain Charles Moore holding up a jar of plastic-filled seawater from a research expedition in 2009. Algalita Marine Research and Education
Since Moore's discovery of the plastic-swirling gyres, there's been a growing amount of research to try and understand the scale of the plastic pollution issue, including several studies from 2020. This new research shows that there's actually a larger quantity of plastic in the ocean than previously thought, and that the plastic even enters the atmosphere and blows back onto land with the sea breeze. Recent studies also indicate that plastic is infiltrating our bodies through food and drinking water. The upshot is that plastic is ubiquitous in the ocean, air, food supply, and even in our own bodies. The new picture that is emerging, scientists say, is of a biosphere permeated with plastic particles right down to the very tissues of humans and other living things, with consequences both known and unknown for the lifeforms on our planet.
How Much Is Really in the Ocean?
In the past 70 years, virgin plastic production has increased 200-fold, and has grown at a rate of 4% each year since 2000, according to a 2017 study in Science Advances. Only a small portion of plastics are recycled, and about a third of all plastic waste ends up in nature, another study suggests.
While new research indicates that plastic is leaking into every part of the natural world, the ocean has long been a focal point of the plastic pollution issue. But how much is actually in the sea?
Moore says it's "virtually impossible" to get an accurate estimate because of the ongoing production of plastic, and the tendency for plastic to break down into microplastics.
"This count is constantly increasing, and it's increasing at a very rapid rate," he said. "It's a moving target."
One commonly cited study, for which Moore acted as a co-author, estimated that there are more than 5.25 trillion plastic pieces floating in the ocean, weighing more than 250,000 tons, based on water samples and visual surveys conducted on 24 expeditions in five subtropical gyres. But even at the time of publication in 2014, Moore said he knew "that was an underestimate."
A more recent study published this year, led by researchers at Plymouth Marine Laboratory, indicates that there's a lot more microplastic in the ocean than we previously thought. When taking samples from the ocean, most researchers use nets with a mesh size of 333 microns, which is small enough to catch microplastics, but big enough to avoid clogging. But the team from Plymouth Marine Laboratory used much finer 100-micron nets to sample the surface waters in the Gulf of Mexico and the English Channel.
"Our nets clogged too, so we used shorter trawls and a specialized technique for removing all the plankton — microscopic plants and biota — from the sample to reveal the microplastics," Matthew Cole, a marine ecologist at Plymouth Marine Laboratory and author of the study, told Mongabay in an email. "This process is quite time-consuming, so it'd be challenging for all samples collected to be treated this way."
The research team at Plymouth Marine Laboratory collecting water samples. Matthew Cole
The researchers found there were 2.5 to 10 times more microplastics in their samples compared to samples that used 333-micron nets.
"If this relationship held true throughout the global ocean, we can multiply existing global microplastic concentrations ascertained using 333-micron nets, to predict that globally there are 125 trillion plastics floating in the ocean," Cole said. "However, we know these plastics keep on degrading, and these smaller plastics would be missed by our smaller 100 micron net — so the true number will be far greater."
Another team of researchers delved down to the seafloor in the Tyrrhenian Sea in the Mediterranean to take sediment samples. They found that microplastic accumulated at depths of 600 to 900 meters (about 2,000 to 3,000 feet), and that certain spots in the ocean, termed "microplastic hotspots," could hold up to 1.9 million pieces per square meter — the highest level ever to be recorded on the seafloor. The results of this study were published in Science in June 2020.
"We were shocked by the sheer number of [microplastics]," Ian Kane, the study's lead author, told Mongabay in May. "1.9 million is enormous. Previous studies have documented much smaller numbers, and … just talked about plastic fragments, but it's fibers that are really the more insidious of the microplastics. These are the things that are more readily consumed and absorbed into organisms' flesh."
A water sample containing plastic. Algalita Marine Research and Education
While these studies shine light on the fact that there's definitely more plastic in the ocean than we think, it still doesn't complete the picture, says Steve Allen, a microplastic expert and doctoral candidate at the University of Strathclyde in the U.K. Large quantities of microplastics still appear to be "missing" from the ocean, he said. For instance, one study suggested that 99.8% of oceanic plastic sinks below the ocean surface layer, making it difficult to detect, but Allen says this doesn't fully explain what's happening to all of the plastic that enters the ocean.
"We're finding some of it," Allen told Mongabay. "But we're … trying to explain where the rest of it went."
Allen and his wife, fellow scientist Deonie Allen, also from the University of Strathclyde, have been working to find their answer, or at least part of it, in an unlikely place: up in the sky.
‘Microplastics Are in Our Air’
As the ocean churns and breaks waves, air is trapped in tiny bubbles. When those bubbles break at the sea's surface, water rushes to fill the void, and this causes tiny, micro-sized particles, like flecks of sea salt or bacteria, to burst into the atmosphere. A new study, published in PLOS ONE, suggests that microplastics are entering the air in the same way.
"[Bubbles] act a little bit like velcro," Deonie Allen told Mongabay. "Rather than the bubble going through the plastic soup and coming to the surface and not bringing any of the plastics with it, it actually collects [the plastic] and hangs on to it as it comes up. And when it bursts, the energy from the creation of the jet to fill the hole that's left in the sea … is what gives it the force to eject the plastic up into the atmosphere."
A lot of previous research on plastic pollution in the ocean has assumed that plastic remains in the seawater and sediment, or gets washed ashore. But this study takes a pioneering step to suggest that ocean plastic is entering the atmosphere through the sea breeze.
"This was just the next logical step to see whether what we're putting into the ocean was actually going to stay there, or whether it would come back," Steve Allen said.
A device used to collect air and mist samples to test for microplastics. Steve Allen
To obtain the necessary data for this study, the research team collected air and sea spray samples on the French Atlantic coast, both onshore and offshore. They found that there was a high potential for ocean microplastics to be released into the air, and suggested that each year, 136,000 tons of microplastics were blowing ashore across the world, although Steve Allen said this number was "extremely conservative."
This study specifically looked at microplastics, but the much smaller nanoplastics are likely going into air by the same means, according to the Allens. But detecting nanoplastics in the water or air can be challenging.
While this is the first study to look at the ocean as a source of atmospheric plastics, other research has examined the capacity of land-based plastics to leach into the air. One study, authored by the Allens and other researchers, found that microplastics were present in the air in the Pyrenees Mountains between France and Spain, even though the testing site was at least 90 kilometers (56 miles) from any land-based source of plastic, such as a landfill. This suggests that the wind can carry microplastics over long distances.
"We know that microplastics are in our air everywhere, from the looks of it," Deonie Allen said.
More research needs to be done to understand the implications of atmospheric microplastics on human health, but according to the Allens, it can't be good for us.
A "cloud catcher" used to collect data for research on microplastics in the atmosphere. Steve Allen
"Microplastics are really good at picking up the contaminants in the surrounding environment — phthalates, flame retardants, heavy metals," Deonie Allen said. "That will get released into the body, relatively effectively."
Enrique Ortiz, a Washington, D.C.-based ecologist and journalist who writes on the plastic pollution issue, says that this evidence should be a "wake up" call to humanity.
"The oceans are picking up the plastic that we throw in it, and that's what we're breathing," Ortiz told Mongabay "And that's the part that really … amazes me."
"But it's not just happening in coastal cities," he added. "No matter where you go, [even] in the middle of the Arctic … the human imprint is already there."
We're not just inhaling microplastics through the air we breathe — we're also getting it through the water we drink and the food we eat.
‘Our Life Is Plasticized’
Plastic waste isn't just leaking into the ocean; it's also polluting freshwater systems and even raining or snowing down from the sky after getting absorbed into the atmosphere, according to another study led by Steve and Deonie Allen. With microplastics being so ubiquitous, it should come as no surprise that they are also present in the food and water we drink.
Drinking water, including tap and bottled water, is the largest source of plastic in our diet, with the average person consuming about 1,769 tiny microplastic particles each week, according to a 2019 report supported by WWF. Other primary sources of microplastics include shellfish, beer and salt.
A new study published this year in Environmental Research found that microplastics were even present in common fruits and vegetables. Apples had one of the highest microplastic counts, with an average of 195,500 plastic particles per gram, while broccoli and carrots averaged more than 100,000 particles per gram.
"The possibility of plastics in our fruit and vegetables is extremely alarming," John Hocevar, ocean campaign director for Greenpeace USA, said in a statement. "This should prompt additional studies to assess how much plastic we are consuming through our produce each day and examine how it is impacting our health."
"Decades of plastic use have contaminated our air, water, and soil," Hocevar added. "Eating just a bite of an apple could now mean eating hundreds of thousands of bits of plastic at the same time."
Through normal water and food consumption, it's estimated that the average person consumes about 5 grams of plastic each week, equivalent to the size of a credit card, according to the WWF report.
"Plastic is everywhere," Thava Palanisami, a microplastics researcher at the University of Newcastle, Australia, and contributor to the WWF report, told Mongabay. "We live with plastic and our life is plasticized — that we know. But we don't know what it does to human health. That's the biggest question mark."
While it's not entirely clear how plastic affects human health, research suggests that the inhalation of fibrous microplastics can lead to respiratory tract inflammation. And another study, referenced in the WWF report, shows that fish and other marine animals with high concentrations of microplastics in their respiratory and digestive tracts have much higher mortality rates. Another study, published in 2020, indicates that plastic accumulates in the muscle tissue of fish.
"If you look at what happens, for example, in fish — it [plastic] stays in their muscles," Ortiz said. "It's scary. If you look at the numbers, you're eating something in the order of one kilo of plastic every three years. I wonder, in our lifetime … if a percentage of our weight will be plastic that is still in our muscles."
"The problem is serious," Palanisami said. "We've got to stop using unwanted plastic and manage plastic waste properly, and … work on new plastic alternates."
Stemming the Tide
Erin Simon, head of plastic waste and business at WWF, and leader of the organization's packaging and material science program, says the key to curbing the plastic pollution issue is making sure that plastic doesn't leak into nature in the first place.
"If you had a leaky faucet, would you bring out the mop first, or would you turn off the water?" Simon told Mongabay. "We're trying to stem that tide of plastic flowing into the ocean and into nature in general … but at the same time, trying to identify the different root causes of that leakage."
While Simon says there are various ways to try and stop plastic from entering the natural world, such as well-managed recycling and composting programs, she also said that large companies can play a critical role in helping to reduce plastic waste. WWF is currently spearheading a new program called ReSource, launched in 2019, that helps analyze companies' plastic footprints in order to work toward sustainable solutions. The program's website says 100 companies could prevent 50 million tons of plastic waste.
"We have three targets that we're looking at when we're partnering with companies," Simon said. "One, get rid of what you don't need. At the end of the day, we do need to reduce our demand for virgin nonrenewable plastic. Once you get rid of that, you think about the stuff that you do need — the things [for which] plastic is the right material choice. Where am I sourcing that from? Am I getting it from recycled content? Am I getting it from a sustainably-sourced bio base, or is it virgin non-renewable [plastic]? And then finally … how are you, as a company … making sure it comes back? Are you designing it in a way that it's technically recyclable into the places that it's ending up?"
Marine debris litters a beach on Laysan Island in the Hawaiian Islands National Wildlife Refuge, where it washed ashore. Susan White / USFWS
While recycled plastic may seem like a satisfactory alternative to virgin plastic, a new study, published in July 2020, showed that children's toys made out of recycled plastic contained high levels of toxic chemicals, comparable to levels found in hazardous waste.
Moore, who has been studying plastic pollution since his discovery of the floating debris in the North Pacific Ocean, says he doesn't believe there's an easy fix to this issue, especially when it comes to the businesses that are producing large amounts of plastic.
"There's no change that corporations can make under the current system that will successfully combat plastic pollution," Moore said. "There is no technical fix to the plastic problem. It's not in the corporate portfolio to reduce sales of your products — the corporate portfolio is about increasing sales. The idea that [corporations] can be convinced to reduce their production and sale of the products that they make is a fantasy."
However, Moore says a solution could be found in "radical change," and that this moment of time, with the Black Lives Matter movement spreading across the world, could provide the opportunity for that change.
"Now is the time when a world historical revolution would be possible, when the people of the world could unite to change the system as a whole," Moore said.
"There won't be a techno fix and science won't develop … a new product that will get us out of the problem of plastic pollution," he said. "It will only come with the world as a whole agreeing to charter a new course towards a non-polluting future."
Reposted with permission from Mongabay.
- Microplastics Are Wafting in on the Sea Breeze - EcoWatch ›
- People Eat 50,000+ Microplastics Every Year, New Study Finds ... ›
- Microplastics in Oceans Outnumber Stars in Our Galaxy by 500 Times ›
- Seafood Study Finds Plastic in 100% of Samples - EcoWatch ›
- Microplastics Found in Human Organs for First Time - EcoWatch ›
- Paint: The Big Source of Ocean Microplastics You Didn’t Know About - EcoWatch ›
- New Research Reveals How Airborne Microplastics Travel the World ›
On Thursday, April 22, the world will celebrate Earth Day, the largest non-religious holiday on the globe.
This Earth Day falls at a critical turning point. It is the second Earth Day since the start of the coronavirus pandemic and follows a year of devastating climate disasters, such as the wildfires that scorched California and the hurricanes that battered Central America. But the day's organizers still have hope, and they have chosen a theme to match.
"At the heart of Earth Day's 2021 theme, Restore Our Earth, is optimism, a critically needed sentiment in a world ravaged by both climate change and the pandemic," EarthDay.org president Kathleen Rogers told USA TODAY.
Last Earth Day marked the first time that the holiday was celebrated digitally to prevent the spread of COVID-19. This will largely be the case this year as well.
"Most of our Earth Day events will be virtual with the exception of individual and small group cleanups through our 'Great Global Cleanup' program," EarthDay.org's Olivia Altman told USA TODAY.
If you do want to participate in person, you can either host or join a cleanup here. Otherwise, EarthDay.org is streaming three days of climate action beginning tomorrow.
Tuesday, April 20: A Global Youth Summit begins at 2:30 p.m. ET featuring young climate activists like Greta Thunberg and Alexandria Villaseñor. This will be followed at 7 p.m. ET by "We Shall Breathe," a virtual summit organized by the Hip Hop Caucus to look at issues like the climate crisis, pollution and the pandemic through an environmental justice lens.
Wednesday, April 22: Beginning at 7 a.m. ET, Education International will lead the "Teach for the Planet: Global Education Summit." Talks will be offered in multiple languages and across multiple time zones to emphasize the importance of education in fighting the climate crisis.
Thursday, April 22: On the day itself, EarthDay.org will host its second ever Earth Day Live digital event beginning at 12 p.m. ET. This event will feature discussions, performances and workshops focusing on the day's theme of restoring our Earth through natural solutions, technological innovations and new ideas.
The digital event is also designed to parallel a global leaders summit on climate being hosted by the Biden administration.
"EARTHDAY.ORG looks forward to contributing to the success of this historic climate summit and making active progress to Restore Our Earth," Rogers said in a press release. "We must see every country rapidly raise their ambition across all climate issues — and that must include climate education which would lead to a green jobs-ready workforce, a green consumer movement, and an educated and civically engaged citizenry around the world."
EarthDay.org grew out of the first Earth Day in 1970, which drew 20 million U.S. residents to call for greater environmental protections. The movement has been credited with helping to establish the U.S. Environmental Protection Agency and to pass landmark environmental legislation like the Clean Air and Water Acts. It has since gone on to be a banner day for environmental action, such as the signing of the Paris agreement in 2016. More than one billion people in more than 192 countries celebrate Earth Day each year.
This legacy continues. The organization called the scheduling of Biden's summit a "clear acknowledgement of the power of Earth Day."
"This is a critical stepping stone for the U.S. to rejoin the world in combating the climate crisis. In concert with several planned parallel EARTHDAY.ORG events worldwide, Earth Day 2021 will accelerate global action on climate change," EarthDay.org wrote.
NASA is teaming up with an innovative non-profit to hunt for greenhouse gas super-emitters responsible for the climate crisis.
Super-emitters are individual sources such as leaking pipelines, landfills or dairy farms that produce a disproportionate amount of planet-warming emissions, especially methane and carbon dioxide. Carbon Mapper, the non-profit leading the effort, hopes to provide a more targeted guide to reducing emissions by launching special satellites that hunt for sources of climate pollution.
"What we've learned is that decision support systems that focus just at the level of nation states, or countries, are necessary but not sufficient. We really need to get down to the scale of individual facilities, and even individual pieces of equipment, if we're going to have an impact across civil society," Riley Duren, Carbon Mapper CEO and University of Arizona researcher, told BBC News. "Super-emitters are often intermittent but they are also disproportionately responsible for the total emissions. That suggests low-hanging fruit, because if you can identify and fix them you can get a big bang for your buck."
The new project, announced Thursday, is a partnership between multiple entities, including Carbon Mapper, the state of California, NASA's Jet Propulsion Laboratory (JPL) and Planet, a company that designs, builds and launches satellites, according to a press release. The project is being implemented in three stages.
The initial stage, which is already complete, involved the initial engineering development. NASA and Planet will work together in the second stage to build two satellites for a 2023 launch. The third phase will launch an entire constellation of satellites starting in 2025.
The satellites will include an imaging spectrometer built by NASA's JPL, NASA explained in a press release. This is a device that can break down visible light into hundreds of colors, providing a unique signature for chemicals such as methane and carbon dioxide. Most imaging spectrometers currently in orbit have larger pixel sizes, making it difficult to locate emission sources that are not always visible from the ground. However, Carbon Mapper spectrometers will have pixels of around 98 square feet, facilitating more detailed pin-pointing.
"This technology enables researchers to identify, study and quantify the strong gas emission sources," JPL Scientist Charles Miller said in the press release.
Once the data is collected, Carbon Mapper will make it available to industry and government actors via an open data portal to help repair leaks.
"These home-grown satellites are a game-changer," California Governor Gavin Newsom said of the project. "They provide California with a powerful, state-of-the-art tool to help us slash emissions of the super-pollutant methane — within our own borders and around the world. That's exactly the kind of dynamic, forward-thinking solution we need now to address the existential crisis of climate change."
By Jenna McGuire
Commonly used herbicides across the U.S. contain highly toxic undisclosed "inert" ingredients that are lethal to bumblebees, according to a new study published Friday in the Journal of Applied Ecology.
The study reviewed several herbicide products and found that most contained glyphosate, an ingredient best recognized from Roundup products and the most widely used herbicide in the U.S. and worldwide.
While the devastating impacts of glyphosate on bee populations are more broadly recognized, the toxicity levels of inert ingredients are less understood because they are not subjected to the same mandatory testing by the U.S. Environmental Protection Agency (EPA).
"Pesticides are manufactured and sold as formulations that contain a mixture of compounds, including one or more active ingredients and, potentially, many inert ingredients," explained the Center for Food Safety in a statement. "The inert ingredients are added to pesticides to aid in mixing and to enhance the products' ability to stick to plant leaves, among other purposes."
The study found that these inert substances can be highly toxic and even block bees' breathing capacity, essentially causing them to drown. While researchers found that some of the combinations of inert ingredients had no negative impacts on the bees, one of the herbicide formulations killed 96% of the bees within 24 hours.
According to the abstract of the study:
Bees exhibited 94% mortality with Roundup® Ready‐To‐Use® and 30% mortality with Roundup® ProActive®, over 24 hr. Weedol® did not cause significant mortality, demonstrating that the active ingredient, glyphosate, is not the cause of the mortality. The 96% mortality caused by Roundup® No Glyphosate supports this conclusion.
"This important new study exposes a fatal flaw in how pesticide products are regulated here in the U.S.," said Jess Tyler, a staff scientist at the Center for Biological Diversity. "Now the question is, will the Biden administration fix this problem, or will it allow the EPA to continue its past practice of ignoring the real-world harms of pesticides?"
According to the Center for Food Safety, there are currently 1,102 registered formulations that contain the active ingredient glyphosate, each with a proprietary mixture of inert ingredients. In 2017, the group filed a legal petition calling for the EPA to force companies to provide safety data on pesticide formulations that include inert ingredients.
"The EPA must begin requiring tests of every pesticide formulation for bee toxicity, divulge the identity of 'secret' formulation additives so scientists can study them, and prohibit application of Roundup herbicides to flowering plants when bees might be present and killed," said Bill Freese, science director at the Center for Food Safety. "Our legal petition gave the EPA a blueprint for acting on this issue of whole formulations. Now they need to take that blueprint and turn it into action, before it's too late for pollinators."
ATTN @EPA: Undisclosed "inert" ingredients in #pesticide products warrant further scrutiny! ➡️ A new study compared… https://t.co/bdFwXCVHsD— Center 4 Food Safety (@Center 4 Food Safety)1618592343.0
Roundup — also linked to cancer in humans — was originally produced by agrochemical giant Monsanto, which was acquired by the German pharmaceutical and biotech company Bayer in 2018.
The merger of the two companies was condemned by environmentalists and food safety groups who warned it would cultivate the greatest purveyor of genetically modified seeds and toxic pesticides in the world.
Reposted with permission from Common Dreams.
By Ayesha Tandon
New research shows that lake "stratification periods" – a seasonal separation of water into layers – will last longer in a warmer climate.
These longer periods of stratification could have "far-reaching implications" for lake ecosystems, the paper says, and can drive toxic algal blooms, fish die-offs and increased methane emissions.
The study, published in Nature Communications, finds that the average seasonal lake stratification period in the northern hemisphere could last almost two weeks longer by the end of the century, even under a low emission scenario. It finds that stratification could last over a month longer if emissions are extremely high.
If stratification periods continue to lengthen, "we can expect catastrophic changes to some lake ecosystems, which may have irreversible impacts on ecological communities," the lead author of the study tells Carbon Brief.
The study also finds that larger lakes will see more notable changes. For example, the North American Great Lakes, which house "irreplaceable biodiversity" and represent some of the world's largest freshwater ecosystems, are already experiencing "rapid changes" in their stratification periods, according to the study.
'Fatal Consequences'
As temperatures rise in the spring, many lakes begin the process of "stratification." Warm air heats the surface of the lake, heating the top layer of water, which separates out from the cooler layers of water beneath.
The stratified layers do not mix easily and the greater the temperature difference between the layers, the less mixing there is. Lakes generally stratify between spring and autumn, when hot weather maintains the temperature gradient between warm surface water and colder water deeper down.
Dr Richard Woolway from the European Space Agency is the lead author of the paper, which finds that climate change is driving stratification to begin earlier and end later. He tells Carbon Brief that the impacts of stratification are "widespread and extensive," and that longer periods of stratification could have "irreversible impacts" on ecosystems.
For example, Dr Dominic Vachon – a postdoctoral fellow from the Climate Impacts Research Centre at Umea University, who was not involved in the study – explains that stratification can create a "physical barrier" that makes it harder for dissolved gases and particles to move between the layers of water.
This can prevent the oxygen from the surface of the water from sinking deeper into the lake and can lead to "deoxygenation" in the depths of the water, where oxygen levels are lower and respiration becomes more difficult.
Oxygen depletion can have "fatal consequences for living organisms," according to Dr Bertram Boehrer, a researcher at the Helmholtz Centre for Environmental Research, who was not involved in the study.
Lead author Woolway tells Carbon Brief that the decrease in oxygen levels at deeper depths traps fish in the warmer surface waters:
"Fish often migrate to deeper waters during the summer to escape warmer conditions at the surface – for example during a lake heatwave. A decrease in oxygen at depth will mean that fish will have no thermal refuge, as they often can't survive when oxygen concentrations are too low."
This can be very harmful for lake life and can even increase "fish die-off events" the study notes.
However, the impacts of stratification are not limited to fish. The study notes that a shift to earlier stratification in spring can also encourage communities of phytoplankton – a type of algae – to grow sooner, and can put them out of sync with the species that rely on them for food. This is called a "trophic mismatch."
Prof Catherine O'Reilly, a professor of geography, geology and the environment at Illinois State University, who was not involved in the study, adds that longer stratified periods could also "increase the likelihood of harmful algae blooms."
The impact of climate change on lakes also extends beyond ecosystems. Low oxygen levels in lakes can enhance the production of methane, which is "produced in and emitted from lakes at globally significant rates," according to the study.
Woolway explains that higher levels of warming could therefore create a positive climate feedback in lakes, where rising temperatures mean larger planet-warming emissions:
"Low oxygen levels at depth also promotes methane production in lake sediments, which can then be released to the surface either via bubbles or by diffusion, resulting in a positive feedback to climate change."
Onset and Breakup
In the study, the authors determine historical changes in lake stratification periods using long-term observational data from some of the "best-monitored lakes in the world" and daily simulations from a collection of lake models.
They also run simulations of future changes in lake stratification period under three different emission scenarios, to determine how the process could change in the future. The study focuses on lakes in the northern hemisphere.
The figure below shows the average change in lake stratification days between 1900 and 2099, compared to the 1970-1999 average. The plot shows historical measurements (black), and the low emission RCP2.6 (blue), mid emissions RCP6.0 (yellow) and extremely high emissions RCP8.5 (red) scenarios.
Change in lake stratification duration compared to the 1970-1999 average, for historical measurements (black), the low emission RCP2.6 (blue) moderate emissions RCP6.0 (yellow) and extremely high emissions RCP8.5 (red). Credit: Woolway et al (2021).
The plot shows that the average lake stratification period has already lengthened. However, the study adds that some lakes are seeing more significant impacts than others.
For example, Blelham Tarn – the most well-monitored lake in the English Lake District – is now stratifying 24 days earlier and maintaining its stratification for an extra 18 days compared to its 1963-1972 averages, the study finds. Woolway tells Carbon Brief that as a result, the lake is already showing signs of oxygen depletion.
Climate change is increasing average stratification duration in lakes, the findings show, by moving the onset of stratification earlier and pushing the stratification "breakup" later. The table below shows projected changes in the onset, breakup and overall length of lake stratification under different emission scenarios, compared to a 1970-1999 baseline.
The table shows that even under the low emission scenario, the lake stratification period is expected to be 13 days longer by the end of the century. However, in the extremely high emissions scenario, it could be 33 days longer.
The table also shows that stratification onset has changed more significantly than stratification breakup. The reasons why are revealed by looking at the drivers of stratification more closely.
Warmer Weather and Weaker Winds
The timing of stratification onset and breakup in lakes is driven by two main factors – temperature and wind speed.
The impact of temperature on lake stratification is based on the fact that warm water is less dense than cool water, Woolway tells Carbon Brief:
"Warming of the water's surface by increasing air temperature causes the density of water to decrease and likewise results in distinct thermal layers within a lake to form – cooler, denser water settles to the bottom of the lake, while warmer, lighter water forms a layer on top."
This means that, as climate change causes temperatures to rise, lakes will begin to stratify earlier and remain stratified for longer. Lakes in higher altitudes are also likely to see greater changes in stratification, Woolway tells Carbon Brief, because "the prolonging of summer is very apparent in high latitude regions."
The figure below shows the expected increase in stratification duration from lakes in the northern hemisphere under the low (left), mid (center), and high (right) emission scenarios. Deeper colors indicate a larger increase in stratification period.
Expected increase in stratification duration in lakes in the northern hemisphere under the low (left), mid (centre) and high (right) emissions scenarios. Credit: Woolway et al (2021).
The figure shows that the expected impact of climate change on stratification duration becomes more pronounced at more northerly high latitudes.
The second factor is wind speed, Woolway explains:
"Wind speed also affects the timing of stratification onset and breakdown, with stronger winds acting to mix the water column, thus acting against the stratifying effect of increasing air temperature."
According to the study, wind speed is expected to decrease slightly as the planet warms. The authors note that the expected changes in near-surface wind speed are "relatively minor" compared to the likely temperature increase, but they add that it may still cause "substantial" changes in stratification.
The study finds that air temperature is the most important factor behind when a lake will begin to stratify. However, when looking at stratification breakup, it finds that wind speed is a more important driver.
Meanwhile, Vachon says that wind speeds also have implications for methane emissions from lakes. He notes that stratification prevents the methane produced on the bottom of the lake from rising and that, when the stratification period ends, methane is allowed to rise to the surface. However, according to Vachon, the speed of stratification breakup will affect how much methane is released into the atmosphere:
"My work has suggested that the amount of accumulated methane in bottom waters that will be finally emitted is related to how quickly the stratification break-up occurs. For example, a slow and progressive stratification break-up will most likely allow water oxygenation and allow the bacteria to oxidise methane into carbon dioxide. However, a stratification break-up that occurs rapidly – for example after storm events with high wind speed – will allow the accumulated methane to be emitted to the atmosphere more efficiently."
Finally, the study finds that large lakes take longer to stratify in spring and typically remain stratified for longer in the autumn – due to their higher volume of water. For example, the authors highlight the North American Great Lakes, which house "irreplaceable biodiversity" and represent some of the world's largest freshwater ecosystems.
These lakes have been stratifying 3.5 days earlier every decade since 1980, the authors find, and their stratification onset can vary by up to 48 days between some extreme years.
O'Reilly tells Carbon Brief that "it's clear that these changes will be moving lakes into uncharted territory" and adds that the paper "provides a framework for thinking about how much lakes will change under future climate scenarios."
Reposted with permission from Carbon Brief.
By Robert Glennon
Interstate water disputes are as American as apple pie. States often think a neighboring state is using more than its fair share from a river, lake or aquifer that crosses borders.
Currently the U.S. Supreme Court has on its docket a case between Texas, New Mexico and Colorado and another one between Mississippi and Tennessee. The court has already ruled this term on cases pitting Texas against New Mexico and Florida against Georgia.
Climate stresses are raising the stakes. Rising temperatures require farmers to use more water to grow the same amount of crops. Prolonged and severe droughts decrease available supplies. Wildfires are burning hotter and lasting longer. Fires bake the soil, reducing forests' ability to hold water, increasing evaporation from barren land and compromising water supplies.
As a longtime observer of interstate water negotiations, I see a basic problem: In some cases, more water rights exist on paper than as wet water – even before factoring in shortages caused by climate change and other stresses. In my view, states should put at least as much effort into reducing water use as they do into litigation, because there are no guaranteed winners in water lawsuits.
Alabama, pay attention to Supreme Court ruling against Florida in water war #Water #SDG6 https://t.co/wIjdoY6Ccr— Noah J. Sabich (@Noah J. Sabich)1617800452.0
Dry Times in the West
The situation is most urgent in California and the Southwest, which currently face "extreme or exceptional" drought conditions. California's reservoirs are half-empty at the end of the rainy season. The Sierra snowpack sits at 60% of normal. In March 2021, federal and state agencies that oversee California's Central Valley Project and State Water Project – regional water systems that each cover hundreds of miles – issued "remarkably bleak warnings" about cutbacks to farmers' water allocations.
The Colorado River Basin is mired in a drought that began in 2000. Experts disagree as to how long it could last. What's certain is that the "Law of the River" – the body of rules, regulations and laws governing the Colorado River – has allocated more water to the states than the river reliably provides.
The 1922 Colorado River Compact allocated 7.5 million acre-feet (one acre-foot is roughly 325,000 gallons) to California, Nevada and Arizona, and another 7.5 million acre-feet to Utah, Wyoming, Colorado and New Mexico. A treaty with Mexico secured that country 1.5 million acre-feet, for a total of 16.5 million acre-feet. However, estimates based on tree ring analysis have determined that the actual yearly flow of the river over the last 1,200 years is roughly 14.6 million acre-feet.
The inevitable train wreck has not yet happened, for two reasons. First, Lakes Mead and Powell – the two largest reservoirs on the Colorado – can hold a combined 56 million acre-feet, roughly four times the river's annual flow.
But diversions and increased evaporation due to drought are reducing water levels in the reservoirs. As of Dec. 16, 2020, both lakes were less than half full.
Second, the Upper Basin states – Utah, Wyoming, Colorado and New Mexico – have never used their full allotment. Now, however, they want to use more water. Wyoming has several new dams on the drawing board. So does Colorado, which is also planning a new diversion from the headwaters of the Colorado River to Denver and other cities on the Rocky Mountains' east slope.
Drought conditions in the continental U.S. on April 13, 2021. U.S. Drought Monitor, CC BY-ND
Utah Stakes a Claim
The most controversial proposal comes from one of the nation's fastest-growing areas: St. George, Utah, home to approximately 90,000 residents and lots of golf courses. St. George has very high water consumption rates and very low water prices. The city is proposing to augment its water supply with a 140-mile pipeline from Lake Powell, which would carry 86,000 acre-feet per year.
Truth be told, that's not a lot of water, and it would not exceed Utah's unused allocation from the Colorado River. But the six other Colorado River Basin states have protested as though St. George were asking for their firstborn child.
In a joint letter dated Sept. 8, 2020, the other states implored the Interior Department to refrain from issuing a final environmental review of the pipeline until all seven states could "reach consensus regarding legal and operational concerns." The letter explicitly threatened a high "probability of multi-year litigation."
Utah blinked. Having earlier insisted on an expedited pipeline review, the state asked federal officials on Sept. 24, 2020 to delay a decision. But Utah has not given up: In March 2021, Gov. Spencer Cox signed a bill creating a Colorado River Authority of Utah, armed with a $9 million legal defense fund, to protect Utah's share of Colorado River water. One observer predicted "huge, huge litigation."
How huge could it be? In 1930, Arizona sued California in an epic battle that did not end until 2006. Arizona prevailed by finally securing a fixed allocation from the water apportioned to California, Nevada and Arizona.
Litigation or Conservation
Before Utah takes the precipitous step of appealing to the Supreme Court under the court's original jurisdiction over disputes between states, it might explore other solutions. Water conservation and reuse make obvious sense in St. George, where per-person water consumption is among the nation's highest.
St. George could emulate its neighbor, Las Vegas, which has paid residents up to $3 per square foot to rip out lawns and replace them with native desert landscaping. In April 2021 Las Vegas went further, asking the Nevada Legislature to outlaw ornamental grass.
The Southern Nevada Water Authority estimates that the Las Vegas metropolitan area has eight square miles of "nonfunctional turf" – grass that no one ever walks on except the person who cuts it. Removing it would reduce the region's water consumption by 15%.
Water rights litigation is fraught with uncertainty. Just ask Florida, which thought it had a strong case that Georgia's water diversions from the Apalachicola-Chattahoochee-Flint River Basin were harming its oyster fishery downstream.
That case extended over 20 years before the U.S. Supreme Court ended the final chapter in April 2021. The court used a procedural rule that places the burden on plaintiffs to provide "clear and convincing evidence." Florida failed to convince the court, and walked away with nothing.
Robert Glennon is a Regents Professor and Morris K. Udall Professor of Law & Public Policy, University of Arizona.
Disclosure statement: Robert Glennon received funding from the National Science Foundation in the 1990s and 2000s.
Reposted with permission from The Conversation.