Quantcast

Lab-Grown Meat Debate Overlooks Cows' Range of Use Worldwide

Meat cultured in laboratory conditions from stem cells. Alex011973 / iStock / Getty Images Plus

By Alison Van Eenennaam

A battle royale is brewing over what to call animal cells grown in cell culture for food. Should it be in-vitro meat, cellular meat, cultured meat or fermented meat? What about animal-free meat, slaughter-free meat, artificial meat, synthetic meat, zombie meat, lab-grown meat, non-meat or artificial muscle proteins?

Then there is the polarizing "fake" versus "clean" meat framing that boils this complex topic down to a simple good versus bad dichotomy. The opposite of fake is of course the ambiguous but desirous "natural." And modeled after "clean" energy, "clean" meat is by inference superior to its alternative, which must logically be "dirty" meat.


The narrative posited by, for now let us call it cultured meat, proponents is that animal agriculture requires large amounts of land and water, and produces high levels of greenhouse gases (GHG). The environmental impacts of a product, such as a beef hamburger, is then compared to the anticipatory ones for producing a cultured hamburger patty through tissue engineering-based cellular agriculture.

I research how biotechnology can improve livestock production, and while it is true that conventional meat production has a large environmental footprint, the problem with this dichotomous framing is that it overlooks the rest of the story.

Cattle produce more than just hamburgers for well-off consumers, and they typically do so by utilizing rain-fed forage growing on non-arable land. Additionally, cellular hamburger patties are themselves not an environmental impact-free lunch, especially from the perspective of energy use.

Energy Inputs Versus Methane

Cultured meat requires the initial collection of stem cells from living animals and then greatly expanding their numbers in a bioreactor, a device for carrying out chemical processes. These living cells must be provided with nutrients in a suitable growth medium containing food-grade components that must be effective and efficient in supporting and promoting muscle cell growth. A typical growth medium contains an energy source such as glucose, synthetic amino acids, antibiotics, fetal bovine serum, horse serum and chicken embryo extract.

If cultured meat is to match or exceed the nutritional value of conventional meat products, nutrients found in meat not synthesized by muscle cells must be supplied as supplements in the culture medium. Conventional meat is a high-quality protein, meaning it has a full complement of essential amino acids. It also provides a source of several other desirable nutrients such as vitamins and minerals, and bioactive compounds.

Therefore to be nutritionally equivalent, a cultured meat medium would need to provide all of the essential amino acids, along with vitamin B12, an essential vitamin found solely in food products of animal origin. Vitamin B12 can be produced by microbes in fermentation tanks, and could be used to supplement a cultured meat product. It would also be necessary to supplement iron, an especially important nutrient for menstruating females, that is also high in beef.

The process for making cultured meat has technically challenging aspects. It includes manufacturing and purifying culture media and supplements in large quantities, expanding animal cells in a bioreactor, processing the resultant tissue into an edible product, removing and disposing of the spent media, and keeping the bioreactor clean. Each are themselves associated with their own set of costs, inputs and energy demands.

The start-to-end environmental footprint—called a life cycle assessment (LCA)—of cultured meat at large scale is not available, as no group has yet achieved this feat. Anticipatory life cycle analyses are therefore based on a range of assumptions, and vary dramatically, ranging from favorable to unfavorable comparisons to conventional meat production.

One study concluded that "in vitro biomass cultivation could require smaller quantities of agricultural inputs and land than livestock; however, those benefits could come at the expense of more intensive energy use as biological functions such as digestion and nutrient circulation are replaced by industrial equivalents."

This idea of "industrial replacement of biological functions" emphasizes the point that nature has already developed a fully functional biological fermentation bioreactor for the conversion of inedible solar-powered cellulosic material, such as grass, into high-quality protein. It is called a cow. Ruminants have evolved, along with their large vat of rumen microbes, to digest cellulose, an insoluble carbohydrate, that is the main constituent of plant cell. That is their super power.

It does comes with the trade-off that methanogenic bacteria are required to perform this conversion and they produce methane, a greenhouse gas, that is subsequently burped up (eructated) by the cow.

A comparison of greenhouse gas emissions by source. During digestion, ruminants such as cows give off methane, a powerful greenhouse gas.EPA

To keep greenhouse gas emissions from livestock in perspective, according to the U.S. Environmental Protection Agency, all of agriculture is responsible for 9 percent of GHG emissions in the U.S., and collectively animal agriculture is responsible for slightly less than 4 percent. Entirely eliminating all animals from U.S. agricultural production systems would decrease GHG emission by only 2.6 percent. By contrast, energy production for electricity and transportation are each responsible for 28 percent of U.S. greenhouse gases.

Cattle and Land Use

On a global scale, the earth's 1.5 billion cattle are found in almost all climatic zones. They have been bred for adaptations to heat, cold, humidity, extreme diet, water scarcity, mountainous terrain, dry environments and for general hardiness. More than just hamburgers, they autonomously harvest forage on marginal lands to produce 66 million tons of beef, 6.5 billion tons of milk, macro- and micronutrients, fibers, hides, skins, fertilizer and fuel; and are used for transportation, draft power, a source of income, and a form of banking for millions of smallholder farmers in developing countries. Even in developed countries, the products and ecosystem services produced by cattle extend well beyond milk and harvestable boneless meat.

Iowa Beef Industry Council

Land use per unit of beef varies significantly by region. It has been estimated that globally only 2 percent of the cattle population is produced in intensive feedlot systems, with the remaining 98 percent being produced on grassland-based grazing systems, or mixed crop and livestock systems. Grass and rangelands make up 80 percent of the 2.5 billion hectares of land used for livestock production, and most of this land is considered too marginal to be convertible to cropland.

Hypothetically removing ruminants from this non-arable land would mean that 57 percent of the land currently used for livestock production would no longer contribute to global food production. This does not consider the unintended impacts of removing grazing animals, which play an important role in maintaining healthy soil and grassland ecosystems. Rain, so-called "green" water as distinct to "blue" surface and ground water, would still fall on rangelands with no cattle, but it would generate no food. And ironically, it is this green rainfall that constitutes the vast majority of beef's water footprint. Beef LCA documents large amounts of land and water, but does not reflect that rain falling on non-arable land has no alternative food production use.

Cultured meat, or whatever it ends up being called, may provide an additional source of protein to help meet projected future demands, and it may further appeal to consumers who choose not to consume conventional meat for ethical or other reasons.

However, framing cultured meat as "clean," thereby unavoidably invoking dirty as the alternative, belittles the important role that ruminants play in global ecosystems and food security. Furthermore, I believe that overplaying the role that dietary choices actually play on GHG emissions in the U.S. distracts focus from reducing the much larger source of GHG from human activities—the burning of fossil fuels for electricity, heat and transportation.

Dr. Alison Van Eenennaam is a cooperative extension specialist in the field of animal genomics and biotechnology in the Department of Animal Science at the University of California, Davis.

Disclosure statement: Alison Van Eenennaam does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond her academic appointment.

Reposted with permission from our media associate The Conversation.

Sponsored
Teenager Alex Weber and friends collected nearly 40,000 golf balls hit into the ocean from a handful of California golf courses. Alex Weber / CC BY-ND

By Matthew Savoca

Plastic pollution in the world's oceans has become a global environmental crisis. Many people have seen images that seem to capture it, such as beaches carpeted with plastic trash or a seahorse gripping a cotton swab with its tail.

As a scientist researching marine plastic pollution, I thought I had seen a lot. Then, early in 2017, I heard from Alex Weber, a junior at Carmel High School in California.

Read More Show Less
Southwest Greenland had the most consistent ice loss from 2003 to 2012. Eqalugaarsuit, Ostgronland, Greenland on Aug. 1, 2018. Rob Oo / CC BY 2.0

Greenland is melting about four times faster than it was in 2003, a new study published Monday in the Proceedings of the National Academy of Sciences found, a discovery with frightening implications for the pace and extent of future sea level rise.

"We're going to see faster and faster sea level rise for the foreseeable future," study lead author and Ohio State University geodynamics professor Dr. Michael Bevis said in a press release. "Once you hit that tipping point, the only question is: How severe does it get?"

Read More Show Less
Sponsored
Seismic tests are a precursor to offshore drilling for oil and gas. BSEE

Finally, some good news about the otherwise terrible partial government shutdown. A federal judge ruled that the Trump administration cannot issue permits to conduct seismic testing during the government impasse.

The Justice Department sought to delay—or stay—a motion filed by a range of coastal cities, businesses and conservation organizations that are suing the Trump administration over offshore oil drilling, Reuters reported. The department argued that it did not have the resources it needed to work on the case due to the shutdown.

Read More Show Less
Brazil, Pantanal, water lilies. Nat Photos / DigitalVision / Getty Images Plus

Most people have heard of the Amazon, South America's famed rainforest and hub of biological diversity. Less well known, though no less critical, is the Pantanal, the world's largest tropical wetland.

Like the Amazon, the Pantanal is ecologically important and imperiled. Located primarily in Brazil, it also stretches into neighboring Bolivia and Paraguay. Covering an area larger than England at more than 70,000 square miles, the massive wetland provides irreplaceable ecosystem services that include the regulation of floodwaters, nutrient renewal, river flow for navigability, groundwater recharge and carbon sequestration. The wetland also supports the economies of the four South American states it covers.

Read More Show Less
Demonstrators participate in a protest march over agricultural policy on Jan. 19 in Berlin, Germany. Carsten Koall / Getty Images Europe

By Andrea Germanos

Organizers said 35,000 people marched through the streets of the German capital on Saturday to say they're "fed up" with industrial agriculture and call for a transformation to a system that instead supports the welfare of the environment, animals and rural farmers.

Read More Show Less
MarioGuti / iStock / Getty Images

By Patrick Rogers

If you have ever considered making the switch to an environmentally friendly electric vehicle, don't drag your feet. Though EV prices are falling, and states are unveiling more and more public charging stations and plug-in-ready parking spots, the federal government is doing everything it can to slam the brakes on our progress away from gas-burning internal combustion engines. President Trump, likely pressured by his allies in the fossil fuel industry, has threatened to end the federal tax credits that have already helped put hundreds of thousands of EVs on the road—a move bound to harm not only our environment but our economy, too. After all, the manufacturing and sale of EVs, hybrids, and plug-in hybrids supported 197,000 jobs in 2017, according to the most recent U.S. Energy and Employment Report.

Read More Show Less
An adult bush dog, part of a captive breeding program. Hudson Garcia

By Jason Bittel

Formidable predators stalk the forests between Panama and northern Argentina. They are sometimes heard but never seen. They are small but feisty and have even been documented trying to take down a tapir, which can top out at nearly 400 pounds. Chupacabras? No.

Read More Show Less
Great white shark. Elias Levy / Flickr / CC BY 2.0

By now you might have seen Ocean Ramsey's rare and jaw-dropping encounter with a great white shark in waters near Oahu, Hawaii.

Ramsey, a marine biologist, said on the TODAY Show that it was "absolutely breathtaking and heart-melting" to be approached by the massive marine mammal.

Read More Show Less