The Slow Death of Nuclear Power and the Rise of Renewables

Home

Read page 1

Furthermore, this is a worldwide trend, as a recent report issued by Germany’s Green-leaning Heinrich Böll Foundation points out. Globally, nuclear power’s worldwide share of electricity production hit its max in the mid-1990s at around 17.6 percent of all electricity produced. Since then, there has been a steady descent, contributing 10.8 percent of all electricity produced in 2013. And this isn’t just shares of a total that are falling—it’s absolute production, too. Globally, output from nuclear reactors hit an all-time high of 2,660 terawatt-hours (TWh) in 2006 before falling to 2,359 TWh in 2013. (1 TWh is enough to power 90,000 homes.)

All this is driven by the simple fact that whereas up until the late 1980s, many more nuclear power plants were being brought online in a given year than were shuttered or mothballed, that trend has flipped. Now, more nuclear power plants are being closed than opened in an average year, and starting in 2000, existing plants have generally operated below capacity due to maintenance issues or cost competition from other sources of power. Notably, gas, wind and solar have been the major beneficiaries of this decline, since while nuclear plants have begun to consistently operate below capacity, these cheaper alternatives have simultaneously experienced tremendous growth.

One saving grace that the industry might tout as evidence of its non-obsolescence is that the number of active, new-build construction projects is higher now than it has been since 1987. While technically true, this “build up” is deceptive and pales in significance when compared to the mountain of new builds that came in the 1970s. Compared to what came before, current construction is a molehill next to a mountain. Further, many projects listed as “active” are little more than paper projects, with many having been technically active for years with little to show for it. Indeed, according to the German Greens’ report:

  • Eight reactors have been listed as “under construction” for more than 20 years and have continually seen delays and setbacks. Of these eight, just two are likely to be hooked up to the grid in the coming years;

  • One Indian reactor has been similarly under construction for 12 years with no hook-up date in sight;

  • In Taiwan, two reactor units under construction for 15 years were halted this past April due to political opposition;

  • At least 50 of the units listed as “under construction” have encountered construction delays—delays lasting from several months to several years;

  • In China, ground zero for the so-called nuclear renaissance, 21 of the 28 units under construction are experiencing delays lasting between several months and more than two years;

  • Of the 17 remaining projects, a few have come online but many have yet to reach a targeted start-up date, and may or may not face delays or cancellations in the future.

The future is renewable

Any way you want to slice it, the report issued by the German Greens is an impressive, devastating indictment of the grim state of the global nuclear power industry. If not yet dead, the industry is nonetheless so gravely ill that leaving it to its own devices would surely lead to its death. Without even more state support, in other words, the production of electricity from nuclear power plants is increasingly going to become something that is a very small, very expensive part of the global energy complex.

This is because reactors are being retired faster than they are being completed, existing fleets are aging and becoming targets for shuttering, and the global nuclear power fleet has been operating well below capacity for many years now—all while new-build projects face delays, cost run-ups and regulatory and market uncertainty going forward. This is happening everywhere, not just in one or two countries. Given this, it should come as no surprise that nuclear is fast being replaced by renewables.

Again, according to the report issued by the German Greens, in 2013, 32 gigawatts (GW) of wind and 37 GW of solar were added to the world’s power grids—output equivalent to several nuclear power plants. By the end of last year, China had a total of 91 GW of wind power and 18 GW of solar capacity installed, with solar exceeding operating nuclear generation capacity for the first time. Indeed, China added four times more solar than nuclear capacity in just the past year and actually generated more electricity in 2013 from both solar and wind than nuclear power. But the reality is actually far worse for nuclear than that, as China generated more electricity from both wind and solar separately than nuclear as a whole.

Meanwhile, Spain generated more power from wind than from any other source, outpacing nuclear and other competitors for the first time. It also marked the first time that wind has become the largest electricity-generating source over an entire year in any country. While impressive, this means that Spain has thus joined the list of countries that possess nuclear power and produce more electricity from renewables—excluding large hydro-power—than from nuclear power. (This is no small group, as it includes not just the abovementioned China, but Brazil, Germany and Japan, too.)

This trend also isn’t going away. Solar is entering an exponential growth path—mimicking the route electronics has taken—while wind continues to grow not just in the U.S., but in the rest of the world as well. Renewables are currently the second largest source of electricity for the European Union and are on a path to overtake fossil fuels—which are declining—in the coming decades. Solar and wind as individual projects are cheaper, quicker to bring to market, more flexible once on the market and have none of the devastating liability issues that nuclear carries. Worse for nuclear, though, is that renewables actually work to reduce wholesale electricity prices in ways devastating to nuclear—and, indeed, all centralized hub-and-spoke utility models—which requires huge amounts of steadily-priced power to remain competitive.

Nuclear, then, is entering a long twilight period of decline, and it’s difficult to see how it will emerge as a viable industry. Like the dinosaurs of old that did not realize their days were numbered, the nuclear power industry is a slow-to-adapt sector requiring a very specialized operating environment in the form of hugely expensive subsidies and an exquisitely calibrated—some would say rigged—market to exist. Since those two pillars of the industry are crumbling, the future of fission-based nuclear power plants may very well become something only talked about—as Lewis Strauss predicted long ago—in the history books.

You Might Also Like

 

EcoWatch Daily Newsletter