Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Tons of Plastic Trash Enter the Great Lakes Every Year – Where Does It Go?

Popular
DWalker44 / Getty Images

By Matthew J. Hoffman

Awareness is rising worldwide about the scourge of ocean plastic pollution, from Earth Day 2018 events to the cover of National Geographic magazine. But few people realize that similar concentrations of plastic pollution are accumulating in lakes and rivers. One recent study found microplastic particles—fragments measuring less then five millimeters—in globally sourced tap water and beer brewed with water from the Great Lakes.


According to recent estimates, more than 8 million tons of plastic enter the oceans every year. Using that study's calculations of how much plastic pollution per person enters the water in coastal regions, one of us (Matthew Hoffman) has estimated that around 10,000 tons of plastic enter the Great Lakes annually. Now we are analyzing where it accumulates and how it may affect aquatic life.

No Garbage Patches, but Lots of Scrap on Beaches

Plastic enters the Great Lakes in many ways. People on the shore and on boats throw litter in the water. Microplastic pollution also comes from wastewater treatment plants, stormwater and agricultural runoff. Some plastic fibers become airborne—possibly from clothing or building materials weathering outdoors—and are probably deposited into the lakes directly from the air.

Sampling natural water bodies for plastic particles is time-consuming and can be done on only a small fraction of any given river or lake. To augment actual sampling, researchers can use computational models to map how plastic pollution will move once it enters the water. In the ocean, these models show how plastic accumulates in particular locations around the globe, including the Arctic.

When plastic pollution was initially found in the Great Lakes, many observers feared that it could accumulate in large floating garbage patches, like those created by ocean currents. However, when we used our computational models to predict how plastic pollution would move around in the surface waters of Lake Erie, we found that temporary accumulation regions formed but did not persist as they do in the ocean. In Lake Erie and the other Great Lakes, strong winds break up the accumulation regions.

Subsequent simulations have also found no evidence for a Great Lakes garbage patch. Initially this seems like good news. But we know that a lot of plastic is entering the lakes. If it is not accumulating at their centers, where is it?

Using our models, we created maps that predict the average surface distribution of Great Lakes plastic pollution. They show that most of it ends up closer to shore. This helps to explain why so much plastic is found on Great Lakes beaches: In 2017 alone, volunteers with the Alliance for the Great Lakes collected more than 16 tons of plastic at beach cleanups. If more plastic is ending up near shore, where more wildlife is located and where we obtain our drinking water, is that really a better outcome than a garbage patch?


Average density of simulated particles in the Great Lakes from 2009-2014. Notice that there are no patches in the middle of the Lakes, but more of the particles are concentrated near the shores. Matthew Hoffman / CC BY-NC-ND

Searching for Missing Plastic

We estimate that over four tons of microplastic are floating in Lake Erie. This figure is only a small fraction of the approximately 2,500 tons of plastic that we estimate enter the Lake each year. Similarly, researchers have found that their estimates of how much plastic is floating at the ocean's surface account for only around 1 percent of estimated input. Plastic pollution has adverse effects on many organisms, and to predict which ecosystems and organisms are most affected, it is essential to understand where it is going.

We have begun using more advanced computer models to map the three-dimensional distribution of plastic pollution in the Great Lakes. Assuming that plastic simply moves with currents, we see that a large proportion of it is predicted to sink to lake bottoms. Mapping plastic pollution this way begins to shed light on exposure risks for different species, based on where in the lake they live.

According to our initial simulations, much of the plastic is expected to sink. This prediction is supported by sediment samples collected from the bottom of the Great Lakes, which can contain high concentrations of plastic.

In a real lake, plastic does not just move with the current. It also can float or sink, based on its size and density. As a particle floats and is "weathered" by sun and waves, breaks into smaller particles, and becomes colonized by bacteria and other microorganisms, its ability to sink will change.

Better understanding of the processes that affect plastic transport will enable us to generate more accurate models of how it moves through the water. In addition, we know little so far about how plastic is removed from the water as it lands on the bottom or the beach, or is ingested by organisms.

Prediction Informs Prevention

Developing a complete picture of how plastic pollution travels through waterways, and which habitats are most at risk, is crucial for conceiving and testing possible solutions. If we can accurately track different types of plastic pollution after they enter the water, we can focus on the types that end up in sensitive habitats and predict their ultimate fate.

Of course, preventing plastic from entering our waterways in the first place is the best way to eliminate the problem. But by determining which plastics are more toxic and also more likely to come into contact with sensitive organisms, or end up in our water supply, we can target the "worst of the worst." With this information, government agencies and conservation groups can develop specific community education programs, target cleanup efforts and work with industries to develop alternatives to products that contain these materials.

Reposted with permission from our media associate The Conversation.

EcoWatch Daily Newsletter

Trump sits during a meeting about safely reopening schools during the coronavirus pandemic on July 7, 2020, in Washington, DC. JIM WATSON / AFP via Getty Images

The Trump administration began the formal process of withdrawing from the World Health Organization (WHO), a White House official said Tuesday, even as coronavirus cases continue to surge in the country.

Read More Show Less
Refrigerated trucks function as temporary morgues at the South Brooklyn Marine Terminal on May 06, 2020 in New York City. As of July, the states where COVID-19 cases are rising are mostly in the West and South. Justin Heiman / Getty Images

The official number of people in the U.S. who have lost their lives to the new coronavirus has now passed 130,000, according to tallies from The New York Times, Reuters and Johns Hopkins University.

Read More Show Less
A man walks on pink snow at the Presena glacier near Pellizzano, Italy on July 4, 2020. MIGUEL MEDINA / AFP via Getty Images

In a troubling sign for the future of the Italian Alps, the snow and ice in a glacier is turning pink due to the growth of snow-melting algae, according to scientists studying the pink ice phenomenon, as CNN reported.

Read More Show Less
Climate activist Greta Thunberg discusses EU plans to tackle the climate emergency with Parliament's environment committee on March 4, 2020. CC-BY-4.0: © European Union 2020 – Source: EP

By Abdullahi Alim

The 2008 financial crisis spurred a number of youth movements including Occupy Wall Street and the Arab Spring. A decade later, this anger resurfaced in a new wave of global protests, from Hong Kong to Beirut to London, only this time driven by the children of the 2008 financial crisis.

Read More Show Less
A climate activist holds a victory sign in Washington, DC. after President Obama announced that he would reject the Keystone XL Pipeline proposal on November 6, 2015. Mark Wilson / Getty Images

By Jake Johnson

The Supreme Court late Monday upheld a federal judge's rejection of a crucial permit for Keystone XL and blocked the Trump administration's attempt to greenlight construction of the 1,200-mile crude oil project, the third such blow to the fossil fuel industry in a day—coming just hours after the cancellation of the Atlantic Coast Pipeline and the court-ordered shutdown of the Dakota Access Pipeline.

Read More Show Less
A forest fire in Yakutsk in eastern Siberia on June 2, 2020. Yevgeny Sofroneyev / TASS via Getty Images

Once thought too frozen to burn, Siberia is now on fire and spewing carbon after enduring its warmest June ever, according to CNN.

Read More Show Less

Trending

The Colima fir tree's distribution has been reduced to the area surrounding the Nevado de Colima volcano. Agustín del Castillo

By Agustín del Castillo

For 20 years, the Colima fir tree (Abies colimensis) has been at the heart of many disputes to conserve the temperate forests of southern Jalisco, a state in central Mexico. Today, the future of this tree rests upon whether the area's avocado crops will advance further and whether neighboring communities will unite to protect it.

Read More Show Less