Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Scientists Find Bacteria That Eats Plastic

Science
Scientists Find Bacteria That Eats Plastic
Aerial shot top view Garbage trucks unload garbage to a recycle in the vicinity of the city of Bangkok, Thailand. bugto / Moment / Getty Images

German researchers have identified a strain of bacterium that not only breaks down toxic plastic, but also uses it as food to fuel the process, according to The Guardian.


The scientists discovered the strain of bacteria, known as pseudomonas bacteria, at a dump site loaded with plastic waste, where they noticed that it was attacking polyurethane. Polyurethane's are ubiquitous in plastic products because they are pliable and durable. However, when they reach the end of their usefulness and end up in landfills, they decompose slowly and slowly release toxic chemicals into the soil as they degrade. They are also notoriously difficult to recycle, according to Courthouse News.

Since it is so difficult to recycle, millions and millions of products containing polyurethane like sneakers, diapers, kitchen sponges and foam installation end up in landfills. Polyurethane usually kills most bacteria too, so it surprised the researchers to find a strain that not only survived, but also used polyurethane to thrive, according to The Guardian. The findings were published in the journal Frontiers in Microbiology.

"The bacteria can use these compounds as a sole source of carbon, nitrogen and energy," Hermann J. Heipieper, a senior scientist at the Helmholtz Centre for Environmental Research-UFZ in Leipzig, Germany and co-author of the new paper, said in a statement. "These findings represent an important step in being able to reuse hard-to-recycle polyurethane products."

Pseudomonas bacteria are part of a family of microorganisms known for its ability to withstand harsh conditions, such as high temperatures and acidic environments.

While the little germs offer hope for a solution to the plastic crisis polluting land and water around the globe, scientists are still a long way away from being able to use the bacteria on a large scale. Heipieper estimated that it could be 10 years before the bacteria are ready to consume plastic at a large scale. He added that in the meantime, it is important to reduce the use of non-recyclable plastic and to cut the amount of plastic used around the world, according to The Guardian.

Our reliance on plastic has created a waste crisis. In 2015, polyurethane products alone accounted for 3.5 million tons of the plastics produced in Europe, according to a press release from the journal that published the study. More than 8 billion metric tons of plastic has been produced since the 1950s, according to The Guardian, and a vast majority of it has polluted the world's land and oceans, or ends up in landfills. Scientists say it threatens a "near permanent contamination of the natural environment."

As for polyurethane, its heat resistance make it a difficult and energy intensive to melt down. Because of that, it is disproportionately tossed into landfills around the world where its slow degradation releases toxic — and often carcinogenic — chemicals, according to Courthouse News.

In the laboratory, the researchers fed key components of polyurethane to the bugs. "We found the bacteria can use these compounds as a sole source of carbon, nitrogen and energy," Heipieper said, as The Guardian reported.

"When you have huge amounts of plastic in the environment, that means there is a lot of carbon and there will be evolution to use this as food," Heipieper said as The Guardian reported.

"Bacteria are there in huge numbers and their evolution is very fast. However, this certainly doesn't mean that the work of microbiologists can lead to a complete solution," he added. "The main message should be to avoid plastic being released into the environment in the first place."

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

EcoWatch Daily Newsletter

Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less
Exxon Mobil Refinery is seen from the top of the Louisiana State Capitol in Baton Rouge, Louisiana on March 5, 2017. WClarke / Wikimedia Commons / CC by 4.0

Exxon Mobil will lay off an estimated 14,000 workers, about 15% of its global workforce, including 1,900 workers in the U.S., the company announced Thursday.

Read More Show Less

Support Ecowatch