Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Clue to Stopping Coronavirus: Knowing How Viruses Adapt From Animals to Humans

Health + Wellness
Horseshoe bats were the source of SARS. Scientists consider bats to be a possible source of coronavirus. Marko Konig / Getty Images

By Frederick Cohan, Kathleen Sagarin and Kelly Mei

As the novel coronavirus death toll mounts, it is natural to worry. How far will this virus travel through humanity, and could another such virus arise seemingly from nowhere?


As microbial ecologists who study the origins of new microbial species, we would like to give some perspective.

As a result of continuing deforestation, "bushmeat" hunting of wild animals and caring for our domestic animals, the novel coronavirus will certainly not be the last deadly virus from wild animals to infect humans. Indeed, wild species of bats and primates abound in viruses closely related to SARS and HIV, respectively. When humans interact with wild animal species, pathogens that are resident in those animals can spill over to humans, sometimes with deadly effects.

No New Virus Under the Sun?

Most "emergent" viruses that are new to humans are regular inhabitants of other species. In some cases, the animal hosts have reached a peaceful coexistence with their viruses, as in the case of bats. In other cases, the viruses are as deadly in their wild animal hosts as in us, as with chimpanzees and their immunodeficiency viruses. Human activities have increased the rate of spillovers of wild animal viruses into our species, particularly from bats.

Deforestation has brought bats closer to human habitations, resulting in recurrent spread of Ebola from bats to humans in sub-Saharan Africa. The trade in wild animals brought us SARS when bats infected captive civets in a live-animal market with the virus. Most profoundly, hunting chimpanzees in Cameroon brought humans HIV about a century ago, most likely by way of an accident in handling an infected carcass.

Other recent, emergent viruses have come to us from bats by way of our domestic animals. Hendra and Nipah virus spilled over in 1994 from fruit bats, by way of horses and pigs in 1999, respectively. In 2012 the MERS virus jumped to humans from camels, which were originally infected from bats several hundred years ago. Caring for our horses' and camels' runny noses was responsible for bringing us Hendra and MERS.

Going further into the past, scientists have determined that agricultural and domestic animals delivered to us our most deadly pathogens. For example, smallpox spilled over from camels, and measles came to us from cattle, both many centuries ago. These virus infections were not a flash in the pan but stayed with us and infected most people as children until the recent past. If not for vaccines, these viruses would still be a routine and deadly part of childhood.

While scientists do not yet know the species origin of the new coronavirus, it is unsurprising that it emerged in a market containing an astonishing variety of live animals.

How Far Will the Novel Coronavirus Spread?

Scientists quantify the ability of a virus to spread by the statistic R0, which measures the average number of people each contagious person infects. When each individual carrying a virus infects more than one person (R0>1), the virus can spread indefinitely. A happier outcome results when each infected person infects fewer than one person (R0<1), on average. Such viruses may spread briefly in humans but eventually will disappear from the human population.

At the moment, the novel coronavirus is transmitting at an R0 around 1.4-2.5, which means it could continue to spread indefinitely. For comparison, seasonal influenza viruses have a median R0 of 1.28, a rate that allows them to spread every year around the globe.

R0 is a dynamic parameter that can change rapidly. The transmission rate can change upward as a result of the virus' evolution and adaptation to humans, or downward by changes in human behavior and technology.

For example, in the recent West African Ebola outbreak, the virus spread from human to human to eventually infect over 28,000 people. In this time, the virus evolved to become better at attaching to human cells, while becoming worse at attaching to cells of bats. This human-adapted lineage went extinct as the West African Ebola outbreak ended. The novel coronavirus could possibly follow suit and adapt to humans, thereby increasing its transmissibility.

No New Virus Under the Sun?

Most "emergent" viruses that are new to humans are regular inhabitants of other species. In some cases, the animal hosts have reached a peaceful coexistence with their viruses, as in the case of bats. In other cases, the viruses are as deadly in their wild animal hosts as in us, as with chimpanzees and their immunodeficiency viruses. Human activities have increased the rate of spillovers of wild animal viruses into our species, particularly from bats.

Deforestation has brought bats closer to human habitations, resulting in recurrent spread of Ebola from bats to humans in sub-Saharan Africa. The trade in wild animals brought us SARS when bats infected captive civets in a live-animal market with the virus. Most profoundly, hunting chimpanzees in Cameroon brought humans HIV about a century ago, most likely by way of an accident in handling an infected carcass.

Other recent, emergent viruses have come to us from bats by way of our domestic animals. Hendra and Nipah virus spilled over in 1994 from fruit bats, by way of horses and pigs in 1999, respectively. In 2012 the MERS virus jumped to humans from camels, which were originally infected from bats several hundred years ago. Caring for our horses' and camels' runny noses was responsible for bringing us Hendra and MERS.

Going further into the past, scientists have determined that agricultural and domestic animals delivered to us our most deadly pathogens. For example, smallpox spilled over from camels, and measles came to us from cattle, both many centuries ago. These virus infections were not a flash in the pan but stayed with us and infected most people as children until the recent past. If not for vaccines, these viruses would still be a routine and deadly part of childhood.

While scientists do not yet know the species origin of the new coronavirus, it is unsurprising that it emerged in a market containing an astonishing variety of live animals.

How Far Will the Novel Coronavirus Spread?

Scientists quantify the ability of a virus to spread by the statistic R0, which measures the average number of people each contagious person infects. When each individual carrying a virus infects more than one person (R0>1), the virus can spread indefinitely. A happier outcome results when each infected person infects fewer than one person (R0<1), on average. Such viruses may spread briefly in humans but eventually will disappear from the human population.

At the moment, the novel coronavirus is transmitting at an R0 around 1.4-2.5, which means it could continue to spread indefinitely. For comparison, seasonal influenza viruses have a median R0 of 1.28, a rate that allows them to spread every year around the globe.

R0 is a dynamic parameter that can change rapidly. The transmission rate can change upward as a result of the virus' evolution and adaptation to humans, or downward by changes in human behavior and technology.

For example, in the recent West African Ebola outbreak, the virus spread from human to human to eventually infect over 28,000 people. In this time, the virus evolved to become better at attaching to human cells, while becoming worse at attaching to cells of bats. This human-adapted lineage went extinct as the West African Ebola outbreak ended. The novel coronavirus could possibly follow suit and adapt to humans, thereby increasing its transmissibility.

Behavior Change in Humans Can Reduce Virus Transmission

Humans can combat the effects of viral evolution through behavioral changes that reduce virus transmission. For example, when SARS first emerged, it spread rapidly, with a high R0, eventually causing 8,098 cases and 774 deaths worldwide.

However, SARS did not have the right stuff to spread indefinitely. It soon became clear that infected individuals were not contagious until after they displayed early symptoms such as severe headaches and myalgia. Thus, infected people could easily diagnose themselves and check into a hospital before infecting anyone. Hence, the R0 dropped to less than 1, which ensured eradication.

Like SARS, Ebola is terribly deadly and contagious, and also does not have the right stuff for persistence in humans. Ebola spreads through exposure to bodily fluids of an infected individual, but cannot be spread at a distance by sneezing or coughing.

The burial traditions of West Africans contributed significantly to the early and rapid outbreak of the virus, as family members directly handled the body of the deceased. When people started avoiding contact with the bodily fluids of those infected, either alive or deceased, Ebola's transmission rate plummeted to an R0<1. The R0 of Ebola decreased through changes in behavior alone, even in the most rural villages, without the benefit of newly developed therapies and vaccines.

So far, it seems scientists and health care workers may not be so lucky in containing the novel coronavirus because it is transmissible even before symptoms arise. However, transmission will certainly be reduced if we follow familiar protocols for preventing cold and flu infection, such as self-quarantine,handwashing and generally avoiding others' germs.

Beyond Behavioral Modification

Medical technology may provide solutions going forward. One promising effort is a portable detection kit. The VereCoV detection kit can detect and distinguish among three coronaviruses, SARS, MERS and 2019-nCoV within just two hours. Long-term technological efforts may eventually include drug therapies and vaccination.

The stakes for containing the novel coronavirus are high. If health officials can reduce virus transmission toward R0<1 through changes in behavior or through technology, we may reach eradication as seen globally in SARS and at least locally in Ebola.

But if the virus continues to spread at its current rate, or at an even higher rate through its evolution, the novel coronavirus could be with us indefinitely. The virus would then join the ranks of persistent viruses our species has accumulated over millennia from animals people have hunted or domesticated. It may take a combination of changes in individual behavior, investment in the public health abroad, and the development of new technologies for the novel outbreak to end happily.

Frederick Cohan is the Huffington Foundation professor of biology in the College of the Environment, Wesleyan University.

Kathleen Sagarin is a doctoral candidate in biology at Wesleyan University.

Kelly Mei is a research assistant at Wesleyan University.

Disclosure statement: The authors do not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and have disclosed no relevant affiliations beyond their academic appointment.

Reposted with permission from The Conversation.

EcoWatch Daily Newsletter

U.S. Vice President Joe Biden speaks during a White House Clean Energy Investment Summit on June 16, 2015 in the Eisenhower Executive Office Building in Washington, DC. Alex Wong / Getty Images

By Jake Johnson

With presumptive Democratic nominee Joe Biden's climate platform becoming increasingly ambitious thanks to nonstop grassroots pressure, fossil fuel executives and lobbyists are pouring money into the coffers of President Donald Trump's reelection campaign in the hopes of keeping an outspoken and dedicated ally of dirty energy in the White House.

Read More Show Less
The Food and Drug Administration is now warning against more than 100 potentially dangerous hand sanitizers.
Antonio_Diaz / Getty Images

The Food and Drug Administration (FDA) is now warning against more than 100 potentially dangerous hand sanitizers.

Read More Show Less
New York Gov. Andrew Cuomo speaks at a news conference on July 1, 2020 in New York City. Byron Smith / Getty Images

While the nation overall struggles with rising COVID cases, New York State is seeing the opposite. After peaking in March and April and implementing strict shutdowns of businesses, the state has seen its number of positive cases steadily decline as it slowly reopens. From coast-to-coast, Governor Andrew Cuomo's response to the crisis has been hailed as an exemplar of how to handle a public health crisis.

Read More Show Less
A whale shark swims in the Egyptian Red Sea. Derek Keats / Wikimedia Commons / CC by 2.0

By Gavin Naylor

Sharks elicit outsized fear, even though the risk of a shark bite is infinitesimally small. As a marine biologist and director of the Florida Program for Shark Research, I oversee the International Shark Attack File – a global record of reported shark bites that has been maintained continuously since 1958.

Read More Show Less
A girl sits under a temporary shade made by joining two bed in Churu, Rajasthan on June 4, 2019. Temperatures in the Indian desert city hit 50 degrees C (122 F) for the second time in three days, sending residents scrambling for shade. MONEY SHARMA / AFP via Getty Images

Current efforts to curb an infectious disease show the potential we have for collective action. That action and more will be needed if we want to stem the coming wave of heat-related deaths that will surpass the number of people who die from all infectious diseases, according to a new study, as The Guardian reported.

Read More Show Less
America Pikas are found from the Sierra Nevada to the Rocky Mountains, and have been migrating to higher elevations. Jon LeVasseur / Flickr / Public Domain

By Jenny Morber

Caribbean corals sprout off Texas. Pacific salmon tour the Canadian Arctic. Peruvian lowland birds nest at higher elevations.

Read More Show Less

Trending

Biologists are studying the impact of climate change on the Nenets and their reindeer herds. Deutsche Welle

Biologist Egor Kirillin is on a special mission. Deep in the Siberian wilderness in the Russian Republic of Sakha, he waits on the Olenjok river until reindeer come thundering into the water.

Read More Show Less