Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Are Microbes Causing Your Milk Allergy?

Insights + Opinion
Are Microbes Causing Your Milk Allergy?

AndreyPopov / iStock / Getty Images Plus

In the past 30 years, food allergies have become increasingly common in the United States. Changes to human genetics can't explain the sudden rise. That is because it takes many generations for changes to spread that widely within a population. Perhaps the explanation lies in changes to our environment, particularly our internal environment. Shifting lifestyle practices over the last half-century—increasing antibiotic and antimicrobial use, surface sterilization, air filtration and changes to diet—have changed our internal environment and wiped out important bacteria with beneficial health effects.


For many years, my research group at the University of Chicago has been exploring the role that intestinal bacteria play in preventing allergic responses to food. Bacteria, together with viruses, fungi and other small organisms living in and on our bodies, collectively make up the microbiome and play a critical supporting role in health.

Bacteria (red) reside among the epithelial cells (blue) and the mucus (green) of a mouse small intestine. UChicago, cnagler@bsd.uchicago.edu, CC BY-SA

The microbiome is our internal environment. Humans and microbes have "grown up" together: As humans evolved, so did their microbes. We tend to think of health practices as changing slowly, but from the perspective of the bacteria in our guts, changes in their composition and function have happened more quickly—and the results are dramatic.

Intestinal Bacteria and Allergies

Several years ago, my research group, together with a collaborator in Italy, Roberto Berni Canani, was comparing the bacteria present in infants with a diagnosed cow's milk allergy to those without. We found some remarkable differences between the two groups. This led us to wonder whether the different bacteria present in each of the two groups are sufficient to protect against allergy. And if so, could we figure out why?

To test this idea, we transplanted the entire microbiome of the two different groups—the healthy infants and those allergic to cow's milk—into special laboratory mice that were bred in a completely sterile environment, with no bacteria of their own. The idea was simple: If we transplant the different groups of bacteria into mice, will the mouse become allergic to cow's milk or not?

When we did this, we were stunned by the results: The bacteria from a healthy infant could protect the mouse from developing an anaphylactic response to a cow's milk protein, while the bacteria from a cow's milk allergic infant did not.

A New Diagnostic?

When we cataloged bacteria present in the mice colonized with healthy bacteria and those present in the mice colonized with the cow's milk allergic bacteria, we were able to calculate a ratio of protective to nonprotective groups. This ratio could accurately predict whether or not the infants had an allergy. We also learned that the two different groups of bacteria activate different genes in the mouse gut.

These genes influence a variety of processes in the intestine, such as metabolism and permeability. We identified one bacterial species in particular, Anaerostipes caccae, as the key. When we put only this species into a germ-free mouse, the mouse was protected from food allergy.

These studies show a health-promoting role for the microbiome in food allergy. It's clear that the internal environment of the intestine is very different in infants with and without food allergy, and that this internal environment changes the biochemistry of the intestine.

Our study also suggests a way forward to harness these protective bacteria, and the molecules that they produce, as therapies to prevent and to treat food allergy. They could also work well as a diagnostic tool for predicting allergies and allergy risk. Therapies based on this idea remain 5 to 10 years away, but I am excited for their prospects. Such therapies may provide relief for children, parents, caregivers and patients living with food allergy.

Cathryn Nagler is the Bunning Food Allergy Professor at the University of Chicago.
Disclosure statement: Cathryn Nagler is the president and co-founder of ClostraBio, Inc.

Reposted with permission from our media associate The Conversation.

People Have the Power - VOTE 2020

Climate-action nonprofit Pathway to Paris first launched in 2014 with an "intimate evening" of music and conversation after the People's Climate March in New York City.

Read More Show Less

EcoWatch Daily Newsletter

Heo Suwat Waterfall in Khao Yai National Park in Thailand. sarote pruksachat / Moment / Getty Images

A national park in Thailand has come up with an innovative way to make sure guests clean up their own trash: mail it back to them.

Read More Show Less

Trending

The 2020 presidential election poses a critical test of climate conservatives' willingness to put their environmental concerns before party politics. filo / Getty Images

By Ilana Cohen

Four years ago, Jacob Abel cast his first presidential vote for Donald Trump. As a young conservative from Concord, North Carolina, the choice felt natural.

But this November, he plans to cast a "protest vote" for a write-in candidate or abstain from casting a ballot for president. A determining factor in his 180-degree turn? Climate change.

Read More Show Less
Headquarters of the World Health Organization in Geneva amid the COVID-19 outbreak on Aug. 17, 2020. FABRICE COFFRINI / AFP via Getty Images

The World Health Organization (WHO) announced Monday that 64 high-income nations have joined an effort to distribute a COVID-19 vaccine fairly, prioritizing the most vulnerable citizens, as Science reported. The program is called the COVID-19 Vaccines Global Access Facility, or Covax, and it is a joint effort led by the WHO, the Coalition for Epidemic Preparedness Innovations (CEPI) and Gavi, the Vaccine Alliance.

Read More Show Less
Exterior of Cold Tube demonstration pavilion. Lea Ruefenacht

By Gloria Oladipo

In the face of dangerous heat waves this summer, Americans have taken shelter in air conditioned cooling centers. Normally, that would be a wise choice, but during a pandemic, indoor shelters present new risks. The same air conditioning systems that keep us cool recirculate air around us, potentially spreading the coronavirus.

Read More Show Less

Support Ecowatch