Kinetic Energy-Harvesting Shoes Could Charge Your Smartphone or Be Wi-Fi Hot Spot

Mechanical engineers at the University of Wisconsin-Madison have developed electricity-generating footwear that lets you charge mobile electronic devices simply by walking.
As it turns out, “human walking carries a lot of energy,” as UW-Madison mechanical engineering associate professor Tom Krupenkin said in a university news release.
Researchers say this shoe could directly power mobile devices through a charging cable or act as a Wi-Fi hot spot. Photo credit: University of Wisconsin-Madison, College of Engineering
“Theoretical estimates show that it can produce up to 10 watts per shoe, and that energy is just wasted as heat," Krupenkin continued. "A total of 20 watts from walking is not a small thing, especially compared to the power requirements of the majority of modern mobile devices.” A typical smartphone, for instance, requires less than two watts.
As the news release points out, the shoes could be especially useful for the military as soldiers have to carry heavy electronics such as flashlights, night vision devices, GPS and many pounds of batteries on top of that.
The shoes could also be a source of electricity to people living in developing countries where access to reliable power sources can be difficult.
In the video below, Krupenkin uses the shoes to directly power an LED flashlight.
There are already many other power-generating-shoe concepts, but successfully pulling it off for the market is quite the difficult task. That's because "traditional approaches to energy harvesting and conversion don’t work well for the relatively small displacements and large forces of footfalls," according to the researchers.
However, by using a process called “reverse electrowetting,” a phenomenon that Krupenkin and senior scientist J. Ashley Taylor pioneered in 2011, a conductive liquid interacts with a nanofilm-coated surface and the mechanical energy is directly converted into electrical energy.
This method can generate an electrical charge but it requires a high-frequency energy source such as a quickly vibrating or rotating motor.
To solve this problem, the researchers came up with the so-called “bubbler” method which combines reverse electrowetting with the growth and pop of, yes, bubbles.
According to the news release:
The researchers’ bubbler device—which contains no moving mechanical parts—consists of two flat plates separated by a small gap filled with a conductive liquid. The bottom plate is covered with tiny holes through which pressurized gas forms bubbles. The bubbles grow until they’re large enough to touch the top plate, which causes the bubble to collapse.
The speedy, repetitive growth and collapse of bubbles pushes the conductive fluid back and forth, generating electrical charge.
An energy harvester, battery and electronics suite are integrated into each sole. Photo credit: University of Wisconsin-Madison
“The high frequency that you need for efficient energy conversion isn’t coming from your mechanical energy source but instead, it’s an internal property of this bubbler approach,” Krupenkin said.
“The bubbler really shines at producing high power densities. For this type of mechanical energy harvesting, the bubbler has a promise to achieve by far the highest power density ever demonstrated.”
According to the engineers, their harvester can be integrated with a broad range of electronic devices embedded in a shoe, such as a Wi-Fi hot spot that acts as a “middleman” between mobile devices and a wireless network. This process "requires no cables, dramatically cuts the power requirements of wireless mobile devices and can make a cellphone battery last 10 times longer between charges," they noted.
Krupenkin and Taylor and their startup company, InStep NanoPower, is currently seeking to partner with industry and commercialize a footwear-embedded energy harvester.
The research team published their findings in a paper on Nov. 16, 2015 in the journal Scientific Reports. Additional authors on the s paper include UW-Madison mechanical engineering graduate students Tsung-Hsing Hsu and Supone Manakasettharn.
Learn more about the footwear in the video below.
YOU MIGHT ALSO LIKE
Check Out These Super Cool Lamps Literally Made From Mushrooms
Kelly Slater: World’s ‘Best Man-Made Wave’ Is Powered 100% by the Sun
Health Scare Led This Woman to Launch an Organic Tampon Company
A tornado tore through a city north of Birmingham, Alabama, Monday night, killing one person and injuring at least 30.
- Tornadoes and Climate Change: What Does the Science Say ... ›
- Tornadoes Hit Unusually Wide Swaths of U.S., Alarming Climate ... ›
- 23 Dead as Tornado Pummels Lee County, AL in Further Sign ... ›
EcoWatch Daily Newsletter
By David Konisky
On his first day in office President Joe Biden started signing executive orders to reverse Trump administration policies. One sweeping directive calls for stronger action to protect public health and the environment and hold polluters accountable, including those who "disproportionately harm communities of color and low-income communities."
Michael S. Regan, President Biden's nominee to lead the U.S. Environmental Protection Agency, grew up near a coal-burning power plant in North Carolina and has pledged to "enact an environmental justice framework that empowers people in all communities." NCDEQ
Trending
By Katherine Kornei
Clear-cutting a forest is relatively easy—just pick a tree and start chopping. But there are benefits to more sophisticated forest management. One technique—which involves repeatedly harvesting smaller trees every 30 or so years but leaving an upper story of larger trees for longer periods (60, 90, or 120 years)—ensures a steady supply of both firewood and construction timber.
A Pattern in the Rings
<p>The <a href="https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/coppice-standards-0" target="_blank">coppice-with-standards</a> management practice produces a two-story forest, said <a href="https://www.researchgate.net/profile/Bernhard_Muigg" target="_blank">Bernhard Muigg</a>, a dendrochronologist at the University of Freiburg in Germany. "You have an upper story of single trees that are allowed to grow for several understory generations."</p><p>That arrangement imprints a characteristic tree ring pattern in a forest's upper story trees (the "standards"): thick rings indicative of heavy growth, which show up at regular intervals as the surrounding smaller trees are cut down. "The trees are growing faster," said Muigg. "You can really see it with your naked eye."</p><p>Muigg and his collaborators characterized that <a href="https://ltrr.arizona.edu/about/treerings" target="_blank">dendrochronological pattern</a> in 161 oak trees growing in central Germany, one of the few remaining sites in Europe with actively managed coppice-with-standards forests. They found up to nine cycles of heavy growth in the trees, the oldest of which was planted in 1761. The researchers then turned to a historical data set — more than 2,000 oak <a href="https://eos.org/articles/podcast-discovering-europes-history-through-its-timbers" target="_blank" rel="noopener noreferrer">timbers from buildings and archaeological sites</a> in Germany and France dating from between 300 and 2015 — to look for a similar pattern.</p>A Gap of 500 Years
<p>The team found wood with the characteristic coppice-with-standards tree ring pattern dating to as early as the 6th century. That was a surprise, Muigg and his colleagues concluded, because the first mention of this forest management practice in historical documents occurred only roughly 500 years later, in the 13th century.</p><p>It's probable that forest management practices were not well documented prior to the High Middle Ages (1000–1250), the researchers suggested. "Forests are mainly mentioned in the context of royal hunting interests or donations," said Muigg. Dendrochronological studies are particularly important because they can reveal information not captured by a sparse historical record, he added.</p><p>These results were <a href="https://www.nature.com/articles/s41598-020-78933-8" target="_blank">published in December in <em>Scientific Reports</em></a>.</p><p>"It's nice to see the longevity and the history of coppice-with-standards," said <a href="https://www.teagasc.ie/contact/staff-directory/s/ian-short/" target="_blank">Ian Short</a>, a forestry researcher at Teagasc, the Agriculture and Food Development Authority in Ireland, not involved in the research. This technique is valuable because it promotes conservation and habitat biodiversity, Short said. "In the next 10 or 20 years, I think we'll see more coppice-with-standards coming back into production."</p><p>In the future, Muigg and his collaborators hope to analyze a larger sample of historic timbers to trace how the coppice-with-standards practice spread throughout Europe. It will be interesting to understand where this technique originated and how it propagated, said Muigg, and there are plenty of old pieces of wood waiting to be analyzed. "There [are] tons of dendrochronological data."</p><p><em><a href="mailto:katherine.kornei@gmail.com" target="_blank" rel="noopener noreferrer">Katherine Kornei</a> is a freelance science journalist covering Earth and space science. Her bylines frequently appear in Eos, Science, and The New York Times. Katherine holds a Ph.D. in astronomy from the University of California, Los Angeles.</em></p><p><em>This story originally appeared in <a href="https://eos.org/articles/tree-rings-reveal-how-ancient-forests-were-managed" target="_blank">Eos</a></em> <em>and is republished here as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.</em></p>Earth's ice is melting 57 percent faster than in the 1990s and the world has lost more than 28 trillion tons of ice since 1994, research published Monday in The Cryosphere shows.
By Jewel Fraser
Noreen Nunez lives in a middle-class neighborhood that rises up a hillside in Trinidad's Tunapuna-Piarco region.