Burning All Fossil Fuels Would Lead to a 17 C Rise in Arctic Temperatures

Burning all the fossil fuels we know to exist on Earth could push global temperature an average of 8 C above preindustrial levels, according to new research. The Arctic would bear the brunt of the warming, with temperatures potentially rising 17 C, said the authors.
The new paper, published Monday in Nature Climate Change, looks at would happen over the next 300 years or so if the world continues to burn coal, oil and gas with no efforts to limit emissions.
Dr. Malte Meinshausen from the Potsdam Institute for Climate Impact Research, who was not involved in the research, told Carbon Brief:
“The study is yet another reminder about the profoundly different planet we would create by burning all fossil fuels … It is hard to imagine a single ecosystem that would remain untouched.”
The paper is in stark contrast to the tone of conversation in Bonn, where climate talks are taking place on how to meet the Paris agreement‘s goal of keeping warming “well below” 2 C or even 1.5 C.
Five Trillion Tons
The starting point for the new study is a world in which there are no efforts to curb emissions. Under this scenario, CO2 stabilizes at roughly 2,000 parts per million (ppm) in 2300.
For context, this is more than five times higher than today’s level (~399ppm) and seven times what it was before humans started industrializing (~280ppm).
Another way to express this is the total amount of carbon released since the beginning of the industrial period, known as cumulative emissions. For this scenario of unmitigated fossil fuel burning, a total of 5 trillion tons would have found its way to the atmosphere by 2300 in the form of carbon dioxide, the paper explains.
This scenario effectively assumes the Paris agreement—adopted last December—fails to gain any traction. Kasia Tokarska, a PhD student at the University of Victoria in Canada and lead author on the paper, told Carbon Brief:
“It is relevant to know what would happen if we do not take actions to mitigate climate change—for example, if we do not ever implement the Paris agreement … From a scientific perspective, it is interesting to study how the climate system would respond under such high forcing levels.”
“Sixth Extinction Event”
Five trillion tons of carbon would raise global temperatures by 6.4-9.5 C, relative to preindustrial times, according to the study. The Arctic, which is already warming faster than the rest of the world, would see temperatures rise at least 14.7, even as high as 19.5 C.
As well as a double figure temperature rise, burning all the world’s fossil fuels would result in a factor of four increase in rainfall in the tropical Pacific, said the authors.
As the map below from the paper shows, rainfall would decrease in other places, including Australia, the Mediterranean, southern Africa, the Amazon, central America and North Africa.
The consequences of such changes would be huge for polar and tropical rainforest ecosystems, as well as for mountain species, the Tundra and coral reefs, said Prof. Camille Parmesan, an expert in marine life at Plymouth University. She told Carbon Brief:
“The temperature and precipitation changes [the authors] project … are way out of bounds for several ecosystems. This is no big surprise, since even what is viewed as ‘moderate’ warming will cause loss of Arctic sea ice and hence the entire ecosystem adapted to sea ice.”
Since model projections already show the loss of whole ecosystems with 4 C or 6 C, it follows that a 8-10 C rise could trigger the loss of more common ecosystems as well. Parmesan said:
“Grasses didn’t evolve until CO2 was low enough that grasses could out-compete trees. At least one research group has predicted loss of grasslands at very high CO2 … [Overall, it is] likely these types of extreme climate changes would lead to a 6th mass extinction event.”
Profound Changes
The temperatures that Monday’s study talks about are higher than scientists have predicted in the past for unmitigated fossil fuel burning.
For example, a 2009 study led by Prof. Myles Allen, professor of geosystem science at the University of Oxford, projects a 4-5 C relative to preindustrial for ~5tn tons of carbon.
But whereas past studies have used relatively simple models, today’s uses four complex Earth System Models (ESMs). These include a more advanced, more realistic simulation of the various interrelating elements of the climate, Tokarska told Carbon Brief:
“These models have a much more complex representation of the climate system and include dynamic carbon cycle feedbacks and dynamic atmosphere, for example, which may be not represented well in the simpler models.”
What difference does the extra model complexity make?
Until now, simple models have suggested that global temperature rises approximately in proportion with cumulative carbon emissions up to about 2tn tons but that after that point, warming slows down.
Monday’s study suggests that is not the case. The ESMs find the relationship holds up to the full 5tn tons, leading to the paper’s conclusion that:
“[T]he unregulated exploitation of the fossil fuel resource could ultimately result in considerably more profound climate changes than previously suggested.”
Whether or not the linear relationship holds for higher emissions may well be interesting from a scientific perspective. But if CO2 was ever to reach this high, it would be a bit of a moot point, Allen told Carbon Brief:
“I very much hope we don’t find out if it is linear out to 5 trillion tons in the real world, because frankly, we’ll be worried about a lot more than the linearity of the temperature/cumulative-carbon relationship if we do.”
Meinshausen echoes this point, he told Carbon Brief:
“Whether the increase in temperatures flattens off or—as this study shows—is likely to continue linearly with cumulative emissions, is secondary, as it is hopefully a world that we will never see.”
Reality Check
So, how likely is it that we will get close to the 5tn tons figure? Is it purely hypothetical or a realistic worst-case scenario?
To give some perspective, the authors equate 5tn tons of carbon “approximately to the unregulated exploitation of the fossil fuel resource.”
In other words, it is about equivalent to how much fossil fuels is thought to exist deep in earth’s crust, should we be able to burn it all, they say.
It’s worth a quick technical note here on fossil fuel “resources” and “reserves.” The authors point to a 2013 report by the International Energy Agency, which explains the difference as follows:
“Resources are those volumes that have yet to be fully characterized or that present technical difficulties or are costly to extract … Reserves are those volumes that are expected to be produced economically using today’s technology.”
But Monday’s study uses the term “fossil fuel resource” to mean the sum total of both reserves plus resources, Tokarska told Carbon Brief.
Since this total includes fossil fuels that are not currently economically recoverable—and, arguably, may never be—it could be suggested this is a hypothetical rather than realistic extreme scenario. Indeed, Tokarska acknowledged:
“Using an estimate of proven reserves would result in a lower warming estimate.”
But the distinction between reserves and resources is probably less relevant when looking so far into the future, said Allen. He told Carbon Brief:
“Many of today’s fossil carbon reserves would have been deemed resources 50 years ago, before it occurred to anyone we would develop technologies to extract oil from the deep ocean, for example or frack methane from rock. If the resource is there and we don’t get a grip on climate policy, it will get used someday.”
Either way—taking reserves or resources—the temperatures are huge.
It’s also worth noting that 5tn tons is at the low end of estimates of the total resource, Tokarska said. For example, the latest report from the Intergovernmental Panel on Climate Change (IPCC) puts the figure for fossil fuel resources in 2011 in the region of 8-13tn tons of carbon (31-50tn tons of CO2).
Thought Experiment
This is not the first time scientists have done this kind of “thought experiment.”
Meinshausen’s 2011 paper described what would happen if you take the IPCC’s high emissions scenario (RCP8.5) and continue it to 2300. The paper also contained a figure of ~5tn tons for the total cumulative carbon emissions under this zero-mitigation scenario.
Monday’s study essentially repeats the exercise with more complex models. Doing so highlights the importance for projections of carbon cycle feedbacks—knock on effects that can speed up or slow down the pace of warming. Prof. Richard Allan from the University of Reading told Carbon Brief, for example:
“The simulations show that the ability of the land to take up some of the carbon emissions and the deep ocean to take up the heat trapped by rising greenhouse gases begins to wane by the end of this century, which exacerbates warming.”
But while the authors of Monday’s study consider 5tn tons of carbon to be a reasonable estimate of where we could end up without any mitigation, the reality is likely to be different. As Allan put it:
“This is a useful ‘what if’ study that exercises computer simulations to their limits. But, in reality, the damage to societies and ecosystems by such severe climate change would cripple economies to such an extent that it would be practically impossible to burn all the fossil fuel reserves.”
YOU MIGHT ALSO LIKE
Bill Nye: Climate Deniers Are Wrong
Deadly Heat Wave Creates Havoc Across South Asia
Fossil Fuel Industry-Funded Attorneys General Try to Block Exxon Climate Fraud Probe
Scientists Confirm Fears About East Antarctica’s Biggest Glacier
New fossils uncovered in Argentina may belong to one of the largest animals to have walked on Earth.
- Groundbreaking Fossil Shows Prehistoric 15-Foot Reptile Tried to ... ›
- Skull of Smallest Known Dinosaur Found in 99-Million-Year Old Amber ›
- Giant 'Toothed' Birds Flew Over Antarctica 40 Million Years Ago ... ›
- World's Second-Largest Egg Found in Antarctica Probably Hatched ... ›
EcoWatch Daily Newsletter
A federal court on Tuesday struck down the Trump administration's rollback of the Obama-era Clean Power Plan regulating greenhouse gas emissions from power plants.
- Pruitt Guts the Clean Power Plan: How Weak Will the New EPA ... ›
- It's Official: Trump Administration to Repeal Clean Power Plan ... ›
- 'Deadly' Clean Power Plan Replacement ›
Trending
By Jonathan Runstadler and Kaitlin Sawatzki
Over the course of the COVID-19 pandemic, researchers have found coronavirus infections in pet cats and dogs and in multiple zoo animals, including big cats and gorillas. These infections have even happened when staff were using personal protective equipment.
Gorillas have been affected by human viruses in the past and are susceptible to the coronavirus. Thomas Fuhrmann via Wikimedia Commons, CC BY-SA
- Gorillas in San Diego Test Positive for Coronavirus - EcoWatch ›
- Wildlife Rehabilitators Are Overwhelmed During the Pandemic. In ... ›
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Utah Mink Becomes First Wild Animal to Test Positive for Coronavirus ›
By Peter Giger
The speed and scale of the response to COVID-19 by governments, businesses and individuals seems to provide hope that we can react to the climate change crisis in a similarly decisive manner - but history tells us that humans do not react to slow-moving and distant threats.
A Game of Jenga
<p>Think of it as a game of Jenga and the planet's climate system as the tower. For generations, we have been slowly removing blocks. But at some point, we will remove a pivotal block, such as the collapse of one of the major global ocean circulation systems, for example the Atlantic Meridional Overturning Circulation (AMOC), that will cause all or part of the global climate system to fall into a planetary emergency.</p><p>But worse still, it could cause runaway damage: Where the tipping points form a domino-like cascade, where breaching one triggers breaches of others, creating an unstoppable shift to a radically and swiftly changing climate.</p><p>One of the most concerning tipping points is mass methane release. Methane can be found in deep freeze storage within permafrost and at the bottom of the deepest oceans in the form of methane hydrates. But rising sea and air temperatures are beginning to thaw these stores of methane.</p><p>This would release a powerful greenhouse gas into the atmosphere, 30-times more potent than carbon dioxide as a global warming agent. This would drastically increase temperatures and rush us towards the breach of other tipping points.</p><p>This could include the acceleration of ice thaw on all three of the globe's large, land-based ice sheets – Greenland, West Antarctica and the Wilkes Basin in East Antarctica. The potential collapse of the West Antarctic ice sheet is seen as a key tipping point, as its loss could eventually <a href="https://science.sciencemag.org/content/324/5929/901" target="_blank">raise global sea levels by 3.3 meters</a> with important regional variations.</p><p>More than that, we would be on the irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters, roughly at the rate of two meters per century, or maybe faster. Just look at the raised beaches around the world, at the last high stand of global sea level, at the end of the Pleistocene period around 120,0000 years ago, to see the evidence of such a warm world, which was just 2°C warmer than the present day.</p>Cutting Off Circulation
<p>As well as devastating low-lying and coastal areas around the world, melting polar ice could set off another tipping point: a disablement to the AMOC.</p><p>This circulation system drives a northward flow of warm, salty water on the upper layers of the ocean from the tropics to the northeast Atlantic region, and a southward flow of cold water deep in the ocean.</p><p>The ocean conveyor belt has a major effect on the climate, seasonal cycles and temperature in western and northern Europe. It means the region is warmer than other areas of similar latitude.</p><p>But melting ice from the Greenland ice sheet could threaten the AMOC system. It would dilute the salty sea water in the north Atlantic, making the water lighter and less able or unable to sink. This would slow the engine that drives this ocean circulation.</p><p><a href="https://www.carbonbrief.org/atlantic-conveyor-belt-has-slowed-15-per-cent-since-mid-twentieth-century" target="_blank">Recent research</a> suggests the AMOC has already weakened by around 15% since the middle of the 20th century. If this continues, it could have a major impact on the climate of the northern hemisphere, but particularly Europe. It may even lead to the <a href="https://ore.exeter.ac.uk/repository/handle/10871/39731?show=full" target="_blank" rel="noopener noreferrer">cessation of arable farming</a> in the UK, for instance.</p><p>It may also reduce rainfall over the Amazon basin, impact the monsoon systems in Asia and, by bringing warm waters into the Southern Ocean, further destabilize ice in Antarctica and accelerate global sea level rise.</p>The Atlantic Meridional Overturning Circulation has a major effect on the climate. Praetorius (2018)
Is it Time to Declare a Climate Emergency?
<p>At what stage, and at what rise in global temperatures, will these tipping points be reached? No one is entirely sure. It may take centuries, millennia or it could be imminent.</p><p>But as COVID-19 taught us, we need to prepare for the expected. We were aware of the risk of a pandemic. We also knew that we were not sufficiently prepared. But we didn't act in a meaningful manner. Thankfully, we have been able to fast-track the production of vaccines to combat COVID-19. But there is no vaccine for climate change once we have passed these tipping points.</p><p><a href="https://www.weforum.org/reports/the-global-risks-report-2021" target="_blank">We need to act now on our climate</a>. Act like these tipping points are imminent. And stop thinking of climate change as a slow-moving, long-term threat that enables us to kick the problem down the road and let future generations deal with it. We must take immediate action to reduce global warming and fulfill our commitments to the <a href="https://www.ipcc.ch/sr15/" target="_blank" rel="noopener noreferrer">Paris Agreement</a>, and build resilience with these tipping points in mind.</p><p>We need to plan now to mitigate greenhouse gas emissions, but we also need to plan for the impacts, such as the ability to feed everyone on the planet, develop plans to manage flood risk, as well as manage the social and geopolitical impacts of human migrations that will be a consequence of fight or flight decisions.</p><p>Breaching these tipping points would be cataclysmic and potentially far more devastating than COVID-19. Some may not enjoy hearing these messages, or consider them to be in the realm of science fiction. But if it injects a sense of urgency to make us respond to climate change like we have done to the pandemic, then we must talk more about what has happened before and will happen again.</p><p>Otherwise we will continue playing Jenga with our planet. And ultimately, there will only be one loser – us.</p>By John R. Platt
The period of the 45th presidency will go down as dark days for the United States — not just for the violent insurgency and impeachment that capped off Donald Trump's four years in office, but for every regressive action that came before.
- Biden Announces $2 Trillion Climate and Green Recovery Plan ... ›
- How Biden and Kerry Can Rebuild America's Climate Leadership ... ›
- Biden's EPA Pick Michael Regan Urged to Address Environmental ... ›
- How Joe Biden's Climate Plan Compares to the Green New Deal ... ›