Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Speaking Squid: How Squid Glow to Communicate in Dark Oceans

Animals

The deep, open ocean may seem like an inhospitable environment, but many species like human-sized Humboldt squids are well-adapted to the harsh conditions. 1,500 feet below the ocean's surface, these voracious predators could be having complex conversations by glowing and changing patterns on their skin that researchers are just beginning to decipher.


In a study published Monday in the Proceedings of the National Academy of Sciences of United States of America, scientists from Stanford University and the Monterey Bay Aquarium Research Institute (MBARI) captured and analyzed footage of Humboldt squids off the Northern California coast using unmanned, robotic submarines called remotely operated vehicles (ROVs) to better understand this squid's visual communication.

Humboldt squids hunt in groups, and their collective foraging has been described as a "feeding frenzy." The ROV footage and new research, however, suggest that the squids actually communicate with each other as they hunt and socialize. They do so by changing patterns of light and dark pigmentation on their skin, the study shows. The changes can be seen even in pitch-black deep ocean because the squids make their entire bodies glow in the dark, reports MBARI.

Humboldt squids have numerous, small bioluminescent organs called photophores embedded subcutaneously throughout their muscle tissue that make them glow, the study's abstract explains. They use this "backlighting" to "boost the contrast" for skin patterning changes, says a Stanford University news report.

Chromatophores, or pigment cells embedded in the skin, create those pattern changes, reports Scimex. MBARI reports how those are then "backlit like words on an e-reader screen."

"Maybe they need this ability to glow and display these pigmentation patterns to facilitate group behaviors in order to survive out there," suggests study collaborator Ben Burford in the Stanford report. "Many squid live in fairly shallow water and don't have these light-producing organs, so it's possible this is a key evolutionary innovation for being able to inhabit the open ocean."

Burford and senior author Bruce Robison compared where the light organs are in Humboldt squid to where the most detailed skin patterns appear. They found an overlap of where the most densely-packed photophores were and where the most intricate patterns occur, the Stanford report explains. The finding lends weight to their hypothesis about the squids' evolution and use of background glow and changing skin patterns to communicate, the study postures.

Burford analyzed ROV video of 30 Humboldt squids, identifying individuals and observing their interactions. Keeping track of behaviors and skin patterns while squids were swimming alone, in small and large groups and while feeding, Burford realized that Humboldt squids exhibit specific color patterns when interacting with one another in groups, reports MBARI.

The scientists suggest these color changes are a way for the squids to communicate with one another. MBARI explains that a half-light/half-dark pattern that Humboldt squid often display while feeding could be a warning: "Look out — I'm going to grab that lanternfish!"

The squids are able to move through the darkness with exceptional precision, never colliding or competing for prey, the Stanford report notes. "This suggests that their pigmentation changes may be an effective means of communication, analogous to humans using turn signals in traffic," explains MBARI. Scimex reports that the changes could be a "signaling of intent during competitive foraging."

The scientists also found that the squids used patterns in specific sequences, "similar to how humans arrange words in a sentence," describes MBARI. A small sample size prohibited the researchers from understanding the meaning of these sequences, but they believe that certain patterns modify the meaning of other patterns, creating a form of "syntax" or something akin to an alphabet, MBARI continues.

In squid talk, "One sequence of patterns might mean 'Look out! — I'm going to grab that lanternfish,' but a different sequence might mean 'Look out! — If you don't get out of my way, I'm going to eat you!'" reports MBARI.

Though the exact meaning of the signals remains unknown and though it is too early to conclude whether the pattern changes constitute a "human-like" language, the findings suggest that the squid communications could be a complex form of animal communication never-before described in deep-sea animals.

Burford concludes, telling MBARI, "What I like about this paper is that we're investigating really basic questions about life in the deep sea. Even though the deep sea is the Earth's largest habitat, it's also the least known. So we're still making a lot of exciting discoveries in natural history and animal behavior."

EcoWatch Daily Newsletter

A resident works in the vegetable garden of the Favela Nova Esperanca – a "green favela" which reuses everything and is subject to the ethics of permaculture – in the outskirts of Sao Paulo, Brazil, on Feb. 14, 2020. NELSON ALMEIDA / AFP via Getty Images

Farmers are the stewards of our planet's precious soil, one of the least understood and untapped defenses against climate change. Because of its massive potential to store carbon and foundational role in growing our food supply, soil makes farming a solution for both climate change and food security.

Read More Show Less
Once the virus escapes into the air inside a building, you have two options: bring in fresh air from outside or remove the virus from the air inside the building. Halfpoint Images / Getty Images

By Shelly Miller

The vast majority of SARS-CoV-2 transmission occurs indoors, most of it from the inhalation of airborne particles that contain the coronavirus. The best way to prevent the virus from spreading in a home or business would be to simply keep infected people away. But this is hard to do when an estimated 40% of cases are asymptomatic and asymptomatic people can still spread the coronavirus to others.

Read More Show Less
California Senator Kamala Harris endorses Democratic presidential candidate Joe Biden at a campaign rally at Renaissance High School in Detroit, Michigan on March 9, 2020. JEFF KOWALSKY / AFP via Getty Images

Former Vice President Joe Biden made a historic announcement Tuesday when he named California Senator Kamala Harris as his running mate in the 2020 presidential election.

Read More Show Less
An aerial view taken on August 8, 2020 shows a large patch of leaked oil from the MV Wakashio off the coast of Mauritius. STRINGER / AFP / Getty Images

The tiny island nation of Mauritius, known for its turquoise waters, vibrant corals and diverse ecosystem, is in the midst of an environmental catastrophe after a Japanese cargo ship struck a reef off the country's coast two weeks ago. That ship, which is still intact, has since leaked more than 1,000 metric tons of oil into the Indian Ocean. Now, a greater threat looms, as a growing crack in the ship's hull might cause the ship to split in two and release the rest of the ship's oil into the water, NPR reported.

On Friday, Prime Minister Pravind Jugnauth declared a state of environmental emergency.

France has sent a military aircraft carrying pollution control equipment from the nearby island of Reunion to help mitigate the disaster. Additionally, Japan has sent a six-member team to assist as well, the BBC reported.

The teams are working to pump out the remaining oil from the ship, which was believed to be carrying 4,000 metric tons of fuel.

"We are expecting the worst," Mauritian Wildlife Foundation manager Jean Hugues Gardenne said on Monday, The Weather Channel reported. "The ship is showing really big, big cracks. We believe it will break into two at any time, at the maximum within two days. So much oil remains in the ship, so the disaster could become much worse. It's important to remove as much oil as possible. Helicopters are taking out the fuel little by little, ton by ton."

Sunil Dowarkasing, a former strategist for Greenpeace International and former member of parliament in Mauritius, told CNN that the ship contains three oil tanks. The one that ruptured has stopped leaking oil, giving disaster crews time to use a tanker and salvage teams to remove oil from the other two tanks before the ship splits.

By the end of Tuesday, the crew had removed over 1,000 metric tons of oil from the ship, NPR reported, leaving about 1,800 metric tons of oil and diesel, according to the company that owns the ship. So far the frantic efforts are paying off. Earlier today, a local police chief told BBC that there were still 700 metric tons aboard the ship.

The oil spill has already killed marine animals and turned the turquoise water black. It's also threatening the long-term viability of the country's coral reefs, lagoons and shoreline, NBC News reported.

"We are starting to see dead fish. We are starting to see animals like crabs covered in oil, we are starting to see seabirds covered in oil, including some which could not be rescued," said Vikash Tatayah, conservation director at Mauritius Wildlife Foundation, according to The Weather Channel.

While the Mauritian authorities have asked residents to leave the clean-up to officials, locals have organized to help.

"People have realized that they need to take things into their hands. We are here to protect our fauna and flora," environmental activist Ashok Subron said in an AFP story.

Reuters reported that sugar cane leaves, plastic bottles and human hair donated by locals are being sewn into makeshift booms.

Human hair absorbs oil, but not water, so scientists have long suggested it as a material to contain oil spills, Gizmodo reported. Mauritians are currently collecting as much human hair as possible to contribute to the booms, which consist of tubes and nets that float on the water to trap the oil.

A northern mockingbird on June 24, 2016. Renee Grayson / CC BY 2.0

Environmentalists and ornithologists found a friend in a federal court on Tuesday when a judge struck down a Trump administration attempt to allow polluters to kill birds without repercussions through rewriting the Migratory Treaty Bird Act (MBTA).

Read More Show Less
A spiny dogfish shark swims in the Olympic Coast National Marine Sanctuary off the coast of Washington. NOAA / Wikimedia Commons

By Elizabeth Claire Alberts

There are trillions of microplastics in the ocean — they bob on the surface, float through the water column, and accumulate in clusters on the seafloor. With plastic being so ubiquitous, it's inevitable that marine organisms, such as sharks, will ingest them.

Read More Show Less

Trending

A "vessel of opportunity" skims oil spilled after the Deepwater Horizon well blowout in the Gulf of Mexico in April 2010. NOAA / Flickr / CC by 2.0

By Loveday Wright and Stuart Braun

After a Japanese-owned oil tanker struck a reef off Mauritius on July 25, a prolonged period of inaction is threatening to become an ecological disaster.

Read More Show Less