Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Underwater Mudslides Are the Biggest Threat to Offshore Drilling, and Energy Companies Aren’t Ready for Them

Insights + Opinion
Underwater Mudslides Are the Biggest Threat to Offshore Drilling, and Energy Companies Aren’t Ready for Them
Oil drifting from the site of the former Taylor Energy oil rig in the Gulf of Mexico. Louisiana Environmental Action Network

By Ian MacDonald

Like generals planning for the last war, oil company managers and government inspectors tend to believe that because they survived the 2010 BP Deepwater Horizon oil spill, they are ready for all contingencies. Today they are expanding drilling into deeper and deeper waters, and the Trump administration is opening more offshore areas to production.

In fact, however, the worst-case scenario for an oil spill catastrophe is not losing control of a single well, as occurred in the BP disaster. Much more damage would be done if one or more of the thousand or so production platforms that now blanket the Gulf of Mexico were destroyed without warning by a deep-sea mudslide.


Instead of one damaged wellhead, a mudslide would leave a tangled mess of pipes buried under a giant mass of sediments. It would be impossible to stop the discharge with caps or plugs, and there would be little hope of completing dozens of relief wells to stop discharge from damaged wells. Oil might flow for decades.

This scenario has already occurred, and we are seeing the results at a well off Louisiana, owned by Taylor Energy, that has been leaking oil since 2004. Based on this disaster and my 30 years of experience studying deep-sea oil and gas seeps, I believe that regulators and energy companies should be doing much more to prevent such catastrophes at other sites.

Active leases for oil and gas drilling in the Gulf of Mexico BOEM

Underwater Avalanches

The mudslide that caused the Taylor Energy leak was not an isolated event. Many major features of the Gulf of Mexico's continental slope — where the sea bottom descends from the continent's outer edge down to the deep ocean floor — were formed when that slope failed. Their bathymetric contours show unmistakable signs of massive mudslides in the past.

Despite generations of oil production, the sedimentary strata of the northern Gulf still harbor billions of barrels of oil. The modern, loose material that lies atop these rock layers is also susceptible to failure, which generates a phenomenon known as turbidity currents. These are massive avalanches of sliding material partly suspended in water, which can travel for miles with astonishing speed.

One of the most famous turbidity currents occurred in 1929 following a 7.2 magnitude earthquake centered near Newfoundland's Grand Banks. The resulting slide displaced over 40 cubic miles of material, traveling at 50 miles per hour for up to 300 miles.

Turbidity currents can be caused by earthquakes, collapsing slopes and other geological disturbances. Once set in motion, the turbid water rushes downward and can change the physical shape of the seafloor. NOAA

Drilling on Shaky Ground

In 2004 storm surge and monster waves from Hurricane Ivan initiated the huge mudslide that destroyed the Taylor Energy platform, an aging facility called MC20A, located about twelve miles off the Mississippi River's Birdfoot Delta. Company engineers claim it had only three flowing wells before it was toppled. Its wells were equipped with subsurface safety valves that were reportedly closed off when the platform was evacuated ahead of the storm.

These valves apparently failed, because miles-long oil slicks have been seen on the waters above ever since the 2004 mudslide. Despite years of effort and expenditure of more than $230 million, oil is still flowing from beneath the legs of the downed platform at a magnitude I estimate to be at least 100 barrels per day. This event is the longest oil spill in U.S. history.

In deeper waters, modern platforms are specifically designed to resist hurricanes. However, earthquakes also occur in the northern Gulf. The National Earthquake Information Center had recorded eight earthquakes in the region prior to 2009, with magnitudes ranging from 3.2 to 5.9. On May 6, 2018 a magnitude 4.6 event occurred at a depth of 6500 feet.

Newer versions of subsurface safety valves on these platforms are intended to protect automatically against storms or ship collisions. Mudslides generated by earthquakes represent forces on an entirely different scale. Once a flow starts, it could travel for tens of miles, producing an unstoppable wave that would destroy whatever platforms and pipelines that lay in its path.

Modern deepwater oil and gas platforms dwarf Taylor Energy's MC20A platform in every respect. They are located one hundred miles or more from land in water 10 or 20 times deeper. Typically, platforms service a hub of pipelines and robotically-controlled structures connecting scores of wells from other oilfields that can be 25 miles or more distant. They are designed for peak production rates of 100,000 to 200,000 barrels of oil per day.

How a Deep-Sea Offshore Drilling Rig Works youtu.be

Using Platforms to Monitor Risk

How should planners prepare for this hazard? A 2007 Interior Department study analyzed the danger and proposed guidelines for assessing risks to platforms and pipelines, starting with studies to identify areas of steep or unstable bottom. The agency recently released a digital map of the northern Gulf's deeper waters that shows evidence of past mudslides with graphic realism. Slope failure and turbidity currents are truly part of the Gulf's nature.

Ironically, however, the map doesn't cover areas closer to shore. Our most comprehensive survey of mud deposits offshore from the Mississippi Delta dates to the 1980s, but over the last 40 years development and dredging have accelerated sediment loss from the Delta. This near-shore sediment load represents a looming risk, much like snowpack in avalanche country.

The Delta region of the Gulf is crisscrossed by hundreds of miles of oil pipelines and dozens of still-producing oil platforms. As the 2007 Interior Department study showed, these structures are at risk for hurricane-generated mudslides. Obtaining updated survey information using modern methods should be a top priority.

Underwater features in the Mississippi Delta, mapped in 1980. Hundreds of pipelines cross this mudslide-prone area. Nodine et al., 2007

There are ways to assess risks in deeper areas as well, including zones such as the Atlantic coast where the Trump administration wants to expand offshore exploration and eventual oil production. This coast is also characterized by submarine canyons formed by turbidity currents.

Oil companies spend billions of dollars to install and operate offshore platforms, but typically resist requests to use their infrastructure for monitoring the marine environment. If they could be induced to cooperate, one option would be to install networks of ocean bottom seismometers to listen for earth movements that might signal risky instability. These systems could transmit data back to land over the platforms' high-speed communication systems. Platforms could also be used to monitor the heat content of Gulf waters, surveying for conditions that promote the rapid intensification of hurricanes.

In my view, U.S. regulators and energy companies have not paid enough attention to hidden vulnerabilities and long-term risks across our fossil fuel economy. But addressing this issue could produce real benefits. Conducting studies to identify unstable slopes will improve our understanding of the seabed. Monitoring for critical warning signs of storms will help coastal communities prepare. Better technology can make offshore infrastructure more durable, and informed regulation can make the offshore industry more vigilant. This would be the best-case scenario.

Ian MacDonald is a professor of earth, ocean and atmospheric Science at Florida State University.
Disclosure statement: Ian MacDonald receives funding from NOAA, the Gulf of Mexico Research Initiative and the ECOGIG-2 Consortium. He was an expert witness in a lawsuit against the operators of the leaking Taylor Energy well, and has consulted for government agencies on the spill and produced past estimates of the oil discharge rate at the site. He serves as faculty adviser for Florida State University's Surfrider Club.

Reposted with permission from our media associate The Conversation.

A crowd of climate activists march behind a banner in NYC during Climate Week on September 20, 2020. Erik McGregor / LightRocket / Getty Images

By Breanna Draxler

After decades on the political periphery, the climate movement is entering the mainstream in 2020, with young leaders at the fore. The Sunrise Movement now includes more than 400 local groups educating and advocating for political action on climate change. Countless students around the world have clearly communicated what's at stake for their futures, notably Swedish activist Greta Thunberg, who just finished her yearlong school strike for climate. Youth activists have been praised for their flexible, big-picture thinking and ability to harness social media to deliver political wins, as Sunrise recently did for U.S. Sen. Ed Markey's primary campaign. They necessarily challenge the status quo.

Read More Show Less

EcoWatch Daily Newsletter

Presidential nominee Joe Biden has not taken a stance on gas exports, including liquefied natural gas. Ken Hodge / Wikimedia Commons / CC by 2.0

By Simon Montlake

For more than a decade, Susan Jane Brown has been battling to stop a natural gas pipeline and export terminal from being built in the backcountry of Oregon. As an attorney at the nonprofit Western Environmental Law Center, she has repeatedly argued that the project's environmental, social, and health costs are too high.

All that was before this month's deadly wildfires in Oregon shrouded the skies above her home office in Portland. "It puts a fine point on it. These fossil fuel projects are contributing to global climate change," she says.

Read More Show Less

Trending

Eating lots of fruits and vegetables will boost the immune system. Stevens Fremont / The Image Bank / Getty Images

By Grayson Jaggers

The connection between the pandemic and our dietary habits is undeniable. The stress of isolation coupled with a struggling economy has caused many of us to seek comfort with our old friends: Big Mac, Tom Collins, Ben and Jerry. But overindulging in this kind of food and drink might not just be affecting your waistline, but could potentially put you at greater risk of illness by hindering your immune system.

Read More Show Less
A graphic shows how Rhoel Dinglasan's smartphone-based saliva test works. University of Florida

As the world continues to navigate the line between reopening and maintaining safety protocols to slow the spread of the coronavirus, rapid and accurate diagnostic screening remains critical to control the outbreak. New mobile-phone-based, self-administered COVID-19 tests being developed independently around the world could be a key breakthrough in making testing more widely available, especially in developing nations.

Read More Show Less
A meteorologist monitors weather in NOAA's Center for Weather and Climate Prediction on July 2, 2013 in Riverdale, Maryland. Mark Wilson / Getty Images

The Trump White House is now set to appoint two climate deniers to the National Oceanic and Atmospheric Administration (NOAA) in one month.

Read More Show Less

Support Ecowatch