Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Meet Anthony Ingraffea—From Industry Insider to Implacable Fracking Opponent


Ellen Cantarow

Dr. Anthony Ingraffea

Why, exactly, is high-volume slickwater hydraulic fracturing such a devastating industry? How best to describe its singularity—its vastness, its difference from other industries and its threat to the planet?

When I interviewed Dr. Anthony Ingraffea—Dwight C. Baum Professor of Engineering, Weiss Presidential Teaching Fellow at Cornell University and president of Physicians, Scientists and Engineers for Healthy Energy, Inc.—I realized that his comments were perhaps the clearest, most compactly instructive of any I’d heard on fracking. So I expanded the original interview to include Ingraffea’s reflections on his odyssey from an industry insider to an implacable fracking opponent, with his descriptions of the fascinating nature of 400 million-year-old shale formations and what, precisely, corporations do when they disrupt these creations of nature.

Ingraffea is perhaps best-known for his co-authorship of a Cornell University 2011 study that established the greenhouse gas footprint of fracking as being greater than that of any other fossil fuel including coal. The lead-investigator for Methane and the Greenhouse-Gas Footprint of Natural Gas from Shale Formations, often called “The Cornell Study,” was Robert Howarth, David R. Atkinson Professor of Ecology and Microbiology. A third co-author was research aide Renee Santoro.

Ingraffea has been a principal investigator on research and development projects ranging from the National Science Foundation, National Aeronautics and Space Administration (NASA) through Schlumberger, Gas Research Institute, Sandia National Laboratories, Association of Iron and Steel Engineers, General Dynamics, Boeing and Northrop Grumman Aerospace. Having been an industry insider for so long, he’s a formidable opponent of anyone who dares to go against him in a debate about high-volume hydraulic fracturing.

His passion for social justice has infused his teaching. He has promoted the entry of women and minorities into engineering. Among his teaching awards are the Society of Women Engineers’ Professor of the Year Award in 1997 and the 2001 Daniel Luzar ’29 Excellence in Teaching Award from the College of Engineering. He organized and directed the Synthesis National Engineering Education Coalition. Its mission: improving undergraduate engineering education and attracting larger numbers of women and minorities to the field.

Those who have watched Ingraffea in action know him for his simplicity and clarity, his refusal to indict his opponents on any but rigorous scientific grounds, the logic with which he demolishes them and his sense of humor. Several years ago, towards the end of a long talk in Pennsylvania (see video below), Ingraffea mentioned that on Halliburton Corporation’s website the corporation lists hydrochloric acid (HCl) among its fracking chemicals. Halliburton also notes that HCl is commonly used in preparing black olives.

Ingraffea deadpans: “It’s really nice to know that,” he says. He waits a few seconds for his audience’s response (laughter). Under a crown of white hair he has expressive black eyebrows and a face straight from Sicily. That face now appeals to his audience with puckish bewilderment.

“So am I now supposed to be less fearful of black olives?” Pause, laughter. “Or more fearful of the hydrochloric acid used in the frack?”

He smiles, shakes his head and makes a what-can-you-do gesture with his hands. “I don’t know what the point is. Obviously, using 50 thousand gallons of hydrochloric acid, and it has to be brought by truck, and stored on the site, and it’s injected [without being] diluted ... ‘cause it has to go in there and do a job, which is dilute all the crap in the perforations [of the shale]. So to tell me it’s also in black olives doesn’t inform me. It irritates me.” Pause, more laughter. “And I’m gonna continue to eat black olives, the passion fruit of the Sicilians."

Q. Could you talk about your earlier career and how you came to your current views?

A. I started out to be an astronaut, with a BS in Aerospace Engineering from Notre Dame, and a few years at Grumman Aerospace Corporation. Things happened, the Vietnam war, the first energy crisis, deciding on an academic career, and I started to study rock mechanics in1974 at U of Colorado/Boulder.  My doctoral thesis was on crack propagation in rock. Not many of us entered that field, but with that first energy crisis, it was analogous to the “going to the moon” challenge: how to get more energy [fossil fuels] out of rock.  I started research on that topic for the NSF [National Science Foundation] and DOE [Department of Energy] in 1978, and began receiving research funding and consulting support from the oil and gas industry in 1980. That industry support continued through 2003, with much of it coming from the Gas Research Institute (now called the Gas Technology Institute) and Schlumberger.

The work with Schlumberger focused on various aspects of hydraulic fracturing. The only contact I ever had with shale gas development was 1983-1984. I spent my first sabbatical at the Lawrence Livermore National Lab working on what was then called the Department of Energy’s Eastern Devonian Shale Project. We were using computer simulation to try to understand how to fracture already fractured shale. [Shale already has natural fractures: see Ingraffea’s comments below.] But it turned out to be a dead end, nobody knew how to do it, it looked like an insoluble problem.


Fractures in the shale happened naturally, millions of years ago. And that natural fracture network is essential to “fracking.” If the rock hadn’t been fractured by nature, humans couldn’t “frack” it—re-frack it—effectively. But since it’s already naturally fractured, there’s no way humans can know where the fluid will go. There’s a branch of mathematics called nonlinear chaos that applies here, meaning the slightest change in conditions and you get a tremendous change in outcome.

It wasn’t until 2007 or 08 that I found that somebody had figured out how to do it. I was aghast at what the solution was: high-volume, slickwater fracking from multi-well, clustered pads with very long laterals. It was as if [I'd] beenworking on something [my] whole life and somebody comes and turns it into Frankenstein.

Q. Could you explain laterals?

A. The lateral is the part of the well that is not vertical. It’s the part that snakes through the shale layer in whatever direction that takes.

Q. And slickwater?

A. That’s the name given to the fracking fluid. It’s been laced with a lubricant because contrary to what you’d think, water isn’t slippery or viscous enough to do the job.

Q. Could we backtrack to earlier fracking? Was there only one well?

A. Yes. In so-called conventional fracking for natural gas, there is only one well per pad. That’s because one is hoping to intersect a large, concentrated volume of gas, a trapped bubble if you will.  This is not the case in unconventional shale gas, where the gas is distributed, not concentrated, so one needs to drill virtually everywhere with many pads and many wells per pad.

Q. What’s a "pad?" Is it cement?

This image of fracking in America gives a good indication of the extent of fracking—four oil pads every square kilometer.

A. [laughs] No, it just refers to an area. The pad is the area the operator uses or requires to do all of the operations of drilling and fracking and storage, and freshwater and wastewater containment.

If you look at aerial photographs, everything you see—all the drilling rigs and trucks and tanks and the little ponds—that’s a "pad." And of course multi-wells mean a lot of wells in the area, and you see a clustered pad arrangement when you fly over an area of a state and you see pads put down in a regular grid pattern. There will be a pad every one mile north, one mile south, one mile east, one mile west. When I talk to the public who are not familiar with this, the part of the process they have most difficulty with isn’t the fracking—going down vertically and then turning—the thing they have most difficulty with is this clustered pad arrangement.

Modern shale gas development is, in my opinion, reversing what nature has done over the last 400 million years or so. In shale gas development we’re releasing carbon that nature stored for all that time. For 400 million years nature has been storing carbon underground and in water, in the oceans. And now humans are coming along and releasing the carbon and in the process we have to take fresh water off the surface of the earth and sequester it underground. And we get it out by pumping water down. This is at a time in human existence when global warming from excess carbon dioxide and methane and water shortages are problems worldwide. To me that is Frankensteinian—a devilish, deadly process.

Q. What do you think is most dangerous about fracking?

A. The problem is not “fracking.” The oil and gas industry has made hay out of the word "fracking" to redefine the issue. They say, "we’ve been doing this for 60 years and there’s never been a documented case ...”

[“Fracking”] is a relatively brief period of time in the life cycle of an enormous industry when water laced with sand and chemicals is pumped down wellbores and the shale is re-fractured. That’s when something very, very distant from people happens. It takes months, maybe years to completely develop a modern shale gas pad. It might take months to process and transport the methane to a market. The fracking process takes a few hours per well. 

People against fracking don’t think of everything that happens before and after. That’s much more risky to human health and the environment. The highest risk to water is when the fracking chemicals are on the surface being stored and being pumped down for fracking, and when they and the harmful materials that had been sequestered in the shale return to the surface after fracking in what is called flowback fluid.

Fracking per se presents little risk to air quality, but the air pollutants from diesel engine exhaust and methane emissions associated with the processes of excavation, drilling, dehumidification, compression, processing and pipeline transport do present serious problems with air quality and global warming. The single most significant element of shale gas development that seems to just not be understood by many is its spatial intensity. It is an extreme form of fossil fuel development because of the very large number of very big wells, total vertical and lateral length and volume of the frack fluid, that have to be drilled throughout a shale play [“play” is the engineering and industry term for “formation.”]   


So what do I think is the largest threat to humans posed by the unconventional development of natural gas from shale formations around the world? And if I wanted to be more specific as an engineer, strictly speaking, what is the greatest threat from clustered multi-well pads, using high-volume hydraulic fracturing from long laterals? That’s the problem.

Because it’s a spatially intense, heavy industrial activity which involves far more than drill-the-well-frack-the-well-connect-the-pipeline-and-go-away, it results in much more land clearing, much more devastation of forests and fields. There’s the necessity of building thousands of miles of pipelines which again results in destruction of forests and fields. There’s the construction of many compressor stations, industrial facilities that compress the gas for transport through pipelines and burn enormous quantities of diesel. [They make] very loud noise and emit hydrocarbons into the atmosphere. Then, there’s the necessary construction of waste pits, and fresh-water ponds which again require heavy earth movement, heavy construction equipment, the off-gassing of waste products from the waste pits, and tremendous amount of heavy truck traffic which again results in burning of large quantities of diesel, increased damage to roads, bridges and increased risk to civilian transportation in the midst of the traffic.


For just about every other industry I can imagine, from making paint, building a toaster, building an automobile, those traditional kinds of industry occur in a zoned industrial area, inside of buildings, separated from home and farm, separated from schools. We have been wise enough because of the way we civilized ourselves to realize that heavy industry should be confined to enclosed spaces. Contrast that here: we have been told by the oil and gas industry that our homes, our schools, our hospitals, even if they are in zoned areas for residences, have to become part of their industry. Oil and gas law in most states trumps zoning. It permits the oil and gas industries to establish its industry next to where we live. We’re asked to participate inside their spaces. They are imposing on us the requirement to locate our homes, hospitals and schools inside their industrial space.

Q. When and how did you start educating people about the threat of the industry?

A. Two things happened. About four years ago, when the shale gas business heated up in NY, I became aware of advertisements on the radio, on TV, in newspapers, articles written in the print media, letters to the editor, op eds, all the way from the New York Times to local papers. And what I’d been reading was astoundingly inaccurate. And if not inaccurate, off-target, incomplete. So my first reaction as an engineer was, they’re not telling the whole truth, they’re missing the main points.

I was asked by some of my fishing buddies—fishermen have a vested interest in clean water by the way—they asked me to give a talk to the local chapter of Trout Unlimited. That’s how I got started on the public circuit. And that caused me to dive more deeply into the literature at the time, the petroleum and engineering literature, and that’s when I began to understand shale-gas development.

Q. So could you comment on several areas where you think the dangers lie?

A. People’s water wells have been contaminated at a significant rate. The industry would say, “When we drill wells some of the wells leak, but it only happens rarely.” I would counter: it used to happen only rarely, now it happens more frequently.

There’s the global threat of global warming, there’s the local threat of contamination of water wells, and there’s the regional threat of air contamination, and surface and groundwater contamination which are exacerbated by the spatially intense form of extraction. Because you have multi-well pads and clustered pads you have very big industrial operations with diesel engines operating for long periods of time in large regions, smog, ozone creation at regional levels.

There are air quality problems because of the nature of shale gas development. Also water quality problems at the regional level because of accidents or purposely dumping of waste in surface waters.

People need to breathe air. People need to drink water. People need to live in an acceptable climate, one they can expect will be stable and unchanging. There are two things involved. Having the community you wanted to live in and you’ve lived in your whole life just taken over from you,  and the environment, the water, the air, the climate, the flora the fauna, it’s all under threat. Both of those threats reside on the spectrum of health versus wealth. It’s the health of many versus the wealth of few. 

Q. So are you for banning this industry?

A. My position is this. Where shale gas development has not yet occurred, ban it. Period. Where it is occurring, enact ironclad regulations, inspect for compliance with them with dogged diligence, and enforce them relentlessly with fines that really mean something. The Ten Commandments are “regulations,” but as words alone where do they leave us?


Finally, wherever any fossil fuel is being developed, slow down its production and use as quickly as feasible, considering all facets of this very complex problem. You can’t turn off the use of fossil fuels today and turn on renewables tomorrow. But we must today start diminishing the use of fossil fuels and accelerating the use of renewable fuels. And that’s where the complications come in, of politics, economics and sociology.

Q. Shale gas development hasn’t yet happened in your own state—New York.  The New York State movement has managed to stave this off for a long time. What’s next?

A. Public comments on the state Department of Environmental Conservation’s (DEC) regulations.

The DEC was to have spent the last three years of shale gas moratorium [in New York State] doing the right thing: no policy recommended to the governor unless and until rigorous science-based studies of environmental, human health, and economic impacts have been performed and validated. In my opinion, DEC has not performed rigorous science-based studies of environmental, human health and economic impacts. The DEC could have spent the last two years evaluating such impacts where shale gas development is ongoing, thus forming a basis for validation. They did not. Instead they have already proposed regulations, which should have been the last thing to check off if and only if the studies had been done and validated. I understand that democracy is messy, but the messy part should only be the political part, not the science part.

Anyone can comment on the DEC regulations, not just New York State residents. Read the Sourcewatch guide in reference to commenting on the DEC regulations.

Anthony Ingraffea will debate Penn State’s Terry Engelder on Jan. 23 at 7 p.m. in the Dundee High School Auditorium in Dundee, New York.

Visit EcoWatch’s FRACKING page for more related news on this topic.


Ellen Cantarow has been a journalist for the past 35 years, and a published writer since the late 1960s. Her writing on Israel and Palestine has appeared widely for three decades, and has been anthologized. Her more recent writing on the environment, especially on the impact of fracking on grassroots communities, appears regularly at Tom Dispatch and has been reprinted at EcoWatch, CBS News, The Nation, Salon, Alternet, European Energy Review, Le Monde Diplomatique, Al-Jazeera English and many more.


EcoWatch Daily Newsletter

Supporters cheer before Trump arrives for a rally at the BOK Center on June 20, 2020 in Tulsa, OK. Jabin Botsford / The Washington Post via Getty Images

On Monday and Tuesday of the week that President Donald Trump held his first rally since March in Tulsa, Oklahoma, the county reported 76 and 96 new coronavirus cases respectively, according to POLITICO. This week, the county broke its new case record Monday with 261 cases and reported a further 206 cases on Tuesday. Now, Tulsa's top public health official thinks the rally and counterprotest "likely contributed" to the surge.

Read More Show Less
In the tropics, farmers often slash and burn forests to clear fertile land for crops, but a new method avoids that technique. Inga Foundation video

Rainforests are an important defense against climate change because they absorb carbon. But many are being destroyed on a massive scale.

Read More Show Less
A truck spreads lime on a meadow to increase the soil's fertility in Yorkshire Dales, UK. Farm Images / Universal Images Group via Getty Images

As we look for advanced technology to replace our dependence on fossil fuels and to rid the oceans of plastic, one solution to the climate crisis might simply be found in rocks. New research found that dispersing rock dust over farmland could suck billions of tons of carbon dioxide from the air every year, according to the first detailed large scale analysis of the technique, as The Guardian reported.

Read More Show Less
Global heating imposes a harsh cost at the most critical time of all: the moment of spawning. Pxfuel

By Tim Radford

German scientists now know why so many fish are so vulnerable to ever-warming oceans. Global heating imposes a harsh cost at the most critical time of all: the moment of spawning.

Read More Show Less
Guillain-Barre syndrome occurs when the body's own immune system attacks and injures the nerves outside of the spinal cord or brain – the peripheral nervous system. Niq Steele / Getty Images

By Sherry H-Y. Chou, Aarti Sarwal and Neha S. Dangayach

The patient in the case report (let's call him Tom) was 54 and in good health. For two days in May, he felt unwell and was too weak to get out of bed. When his family finally brought him to the hospital, doctors found that he had a fever and signs of a severe infection, or sepsis. He tested positive for SARS-CoV-2, the virus that causes COVID-19 infection. In addition to symptoms of COVID-19, he was also too weak to move his legs.

When a neurologist examined him, Tom was diagnosed with Guillain-Barre Syndrome, an autoimmune disease that causes abnormal sensation and weakness due to delays in sending signals through the nerves. Usually reversible, in severe cases it can cause prolonged paralysis involving breathing muscles, require ventilator support and sometimes leave permanent neurological deficits. Early recognition by expert neurologists is key to proper treatment.

We are neurologists specializing in intensive care and leading studies related to neurological complications from COVID-19. Given the occurrence of Guillain-Barre Syndrome in prior pandemics with other corona viruses like SARS and MERS, we are investigating a possible link between Guillain-Barre Syndrome and COVID-19 and tracking published reports to see if there is any link between Guillain-Barre Syndrome and COVID-19.

Some patients may not seek timely medical care for neurological symptoms like prolonged headache, vision loss and new muscle weakness due to fear of getting exposed to virus in the emergency setting. People need to know that medical facilities have taken full precautions to protect patients. Seeking timely medical evaluation for neurological symptoms can help treat many of these diseases.

What Is Guillain-Barre Syndrome?

Guillain-Barre syndrome occurs when the body's own immune system attacks and injures the nerves outside of the spinal cord or brain – the peripheral nervous system. Most commonly, the injury involves the protective sheath, or myelin, that wraps nerves and is essential to nerve function.

Without the myelin sheath, signals that go through a nerve are slowed or lost, which causes the nerve to malfunction.

To diagnose Guillain-Barre Syndrome, neurologists perform a detailed neurological exam. Due to the nerve injury, patients often may have loss of reflexes on examination. Doctors often need to perform a lumbar puncture, otherwise known as spinal tap, to sample spinal fluid and look for signs of inflammation and abnormal antibodies.

Studies have shown that giving patients an infusion of antibodies derived from donated blood or plasma exchange – a process that cleans patients' blood of harmful antibodies - can speed up recovery. A very small subset of patients may need these therapies long-term.

The majority of Guillain-Barre Syndrome patients improve within a few weeks and eventually can make a full recovery. However, some patients with Guillain-Barre Syndrome have lingering symptoms including weakness and abnormal sensations in arms and/or legs; rarely patients may be bedridden or disabled long-term.

Guillain-Barre Syndrome and Pandemics

As the COVID-19 pandemic sweeps across the globe, many neurologic specialists have been on the lookout for potentially serious nervous system complications such as Guillain-Barre Syndrome.

Though Guillain-Barre Syndrome is rare, it is well known to emerge following bacterial infections, such as Campylobacter jejuni, a common cause of food poisoning, and a multitude of viral infections including the flu virus, Zika virus and other coronaviruses.

Studies showed an increase in Guillain-Barre Syndrome cases following the 2009 H1N1 flu pandemic, suggesting a possible connection. The presumed cause for this link is that the body's own immune response to fight the infection turns on itself and attacks the peripheral nerves. This is called an "autoimmune" condition. When a pandemic affects as many people as our current COVID-19 crisis, even a rare complication can become a significant public health problem. That is especially true for one that causes neurological dysfunction where the recovery takes a long time and may be incomplete.

The first reports of Guillain-Barre Syndrome in COVID-19 pandemic originated from Italy, Spain and China, where the pandemic surged before the U.S. crisis.

Though there is clear clinical suspicion that COVID-19 can lead to Guillain-Barre Syndrome, many important questions remain. What are the chances that someone gets Guillain-Barre Syndrome during or following a COVID-19 infection? Does Guillain-Barre Syndrome happen more often in those who have been infected with COVID-19 compared to other types of infections, such as the flu?

The only way to get answers is through a prospective study where doctors perform systematic surveillance and collect data on a large group of patients. There are ongoing large research consortia hard at work to figure out answers to these questions.

Understanding the Association Between COVID-19 and Guillain-Barre Syndrome

While large research studies are underway, overall it appears that Guillain-Barre Syndrome is a rare but serious phenomenon possibly linked to COVID-19. Given that more than 10.7 million cases have been reported for COVID-19, there have been 10 reported cases of COVID-19 patients with Guillain-Barre Syndrome so far – only two reported cases in the U.S., five in Italy, two cases in Iran and one from Wuhan, China.

It is certainly possible that there are other cases that have not been reported. The Global Consortium Study of Neurological Dysfunctions in COVID-19 is actively underway to find out how often neurological problems like Guillain-Barre Syndrome is seen in hospitalized COVID-19 patients. Also, just because Guillain-Barre Syndrome occurs in a patient diagnosed with COVID-19, that does not imply that it was caused by the virus; this still may be a coincident occurrence. More research is needed to understand how the two events are related.

Due to the pandemic and infection-containment considerations, diagnostic tests, such as a nerve conduction study that used to be routine for patients with suspected Guillain-Barre Syndrome, are more difficult to do. In both U.S. cases, the initial diagnosis and treatment were all based on clinical examination by a neurological experts rather than any tests. Both patients survived but with significant residual weakness at the time these case reports came out, but that is not uncommon for Guillain-Barre Syndrome patients. The road to recovery may sometimes be long, but many patients can make a full recovery with time.

Though the reported cases of Guillain-Barre Syndrome so far all have severe symptoms, this is not uncommon in a pandemic situation where the less sick patients may stay home and not present for medical care for fear of being exposed to the virus. This, plus the limited COVID-19 testing capability across the U.S., may skew our current detection of Guillain-Barre Syndrome cases toward the sicker patients who have to go to a hospital. In general, the majority of Guillain-Barre Syndrome patients do recover, given enough time. We do not yet know whether this is true for COVID-19-related cases at this stage of the pandemic. We and colleagues around the world are working around the clock to find answers to these critical questions.

Sherry H-Y. Chou is an Associate Professor of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh.

Aarti Sarwal is an Associate Professor, Neurology, Wake Forest University.

Neha S. Dangayach is an Assistant Professor of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai.

Disclosure statement: Sherry H-Y. Chou receives funding from The University of Pittsburgh Clinical Translational Science Institute (CTSI), the National Institute of Health, and the University of Pittsburgh School of Medicine Dean's Faculty Advancement Award. Sherry H-Y. Chou is a member of Board of Directors for the Neurocritical Care Society. Neha S. Dangayach receives funding from the Bee Foundation, the Friedman Brain Institute, the Neurocritical Care Society, InCHIP-UConn Center for mHealth and Social Media Seed Grant. She is faculty for emcrit.org and for AiSinai. Aarti Sarwal does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Reposted with permission from The Conversation.

Nurses wear PPE prior to caring for a COVID-19 patient in the ICU at Sharp Grossmont Hospital on May 5, 2020 in La Mesa, California. Mario Tama / Getty Images

One of the initial reasons social distancing guidelines were put in place was to allow the healthcare system to adapt to a surge in patients since there was a critical shortage of beds, ventilators and personal protective equipment. In fact, masks that were designed for single-use were reused for an entire week in some hospitals.

Read More Show Less


Democratic presidential hopefuls Joe Biden and Senator Bernie Sanders greet each other with a safe elbow bump before the start of the Democratic Party 2020 presidential debate in a CNN Washington Bureau studio in Washington, DC on March 15, 2020. Mandel Ngan / AFP / Getty Images

By Jake Johnson

Unity Task Forces formed by presumptive Democratic presidential nominee Joe Biden and Sen. Bernie Sanders unveiled sweeping party platform recommendations Wednesday that—while falling short of progressive ambitions in a number of areas, from climate to healthcare—were applauded as important steps toward a bold and just policy agenda that matches the severity of the moment.

"We've moved the needle a lot, especially on environmental justice and upping Biden's ambition," said Sunrise Movement co-founder and executive director Varshini Prakash, a member of the Biden-Sanders Climate Task Force. "But there's still more work to do to push Democrats to act at the scale of the climate crisis."

The climate panel—co-chaired by Rep. Alexandria Ocasio-Cortez (D-N.Y.) and former Secretary of State John Kerry—recommended that the Democratic Party commit to "eliminating carbon pollution from power plants by 2035," massively expanding investments in clean energy sources, and "achieving net-zero greenhouse gas emissions for all new buildings by 2030."

In a series of tweets Wednesday night, Ocasio-Cortez—the lead sponsor of the House Green New Deal resolution—noted that the Climate Task Force "shaved 15 years off Biden's previous target for 100% clean energy."

"Of course, like in any collaborative effort, there are areas of negotiation and compromise," said the New York Democrat. "But I do believe that the Climate Task Force effort meaningfully and substantively improved Biden's positions."


The 110 pages of policy recommendations from the six eight-person Unity Task Forces on education, the economy, criminal justice, immigration, climate change, and healthcare are aimed at shaping negotiations over the 2020 Democratic platform at the party's convention next month.

Sanders said that while the "end result isn't what I or my supporters would've written alone, the task forces have created a good policy blueprint that will move this country in a much-needed progressive direction and substantially improve the lives of working families throughout our country."

"I look forward to working with Vice President Biden to help him win this campaign," the Vermont senator added, "and to move this country forward toward economic, racial, social, and environmental justice."

Biden, for his part, applauded the task forces "for helping build a bold, transformative platform for our party and for our country."

"I am deeply grateful to Bernie Sanders for working with us to unite our party and deliver real, lasting change for generations to come," said the former vice president.

On the life-or-death matter of reforming America's dysfunctional private health insurance system—a subject on which Sanders and Biden clashed repeatedly throughout the Democratic primary process—the Unity Task Force affirmed healthcare as "a right" but did not embrace Medicare for All, the signature policy plank of the Vermont senator's presidential bid.

Instead, the panel recommended building on the Affordable Care Act by establishing a public option, investing in community health centers, and lowering prescription drug costs by allowing the federal government to negotiate prices. The task force also endorsed making all Covid-19 testing, treatments, and potential vaccines free and expanding Medicaid for the duration of the pandemic.

"It has always been a crisis that tens of millions of Americans have no or inadequate health insurance—but in a pandemic, it's potentially catastrophic for public health," the task force wrote.

Dr. Abdul El-Sayed, a former Michigan gubernatorial candidate and Sanders-appointed member of the Healthcare Task Force, said that despite major disagreements, the panel "came to recommendations that will yield one of the most progressive Democratic campaign platforms in history—though we have further yet to go."


Observers and advocacy groups also applauded the Unity Task Forces for recommending the creation of a postal banking system, endorsing a ban on for-profit charter schools, ending the use of private prisons, and imposing a 100-day moratorium on deportations "while conducting a full-scale study on current practices to develop recommendations for transforming enforcement policies and practices at ICE and CBP."

Marisa Franco, director of immigrant rights group Mijente, said in a statement that "going into these task force negotiations, we knew we were going to have to push Biden past his comfort zone, both to reconcile with past offenses and to carve a new path forward."

"That is exactly what we did, unapologetically," said Franco, a member of the Immigration Task Force. "For years, Mijente, along with the broader immigrant rights movement, has fought to reshape the narrative around immigration towards racial justice and to focus these very demands. We expect Biden and the Democratic Party to implement them in their entirety."

"There is no going back," Franco added. "Not an inch, not a step. We must only move forward from here."

Reposted with permission from Common Dreams.