After Thousands of Years, Western Science Is Slowly Catching Up to Indigenous Knowledge

By George Nicholas
Our knowledge of what the denizens of the animal kingdom are up to, especially when humans aren't around, has steadily increased over the last 50 years. For example, we know now that animals use tools in their daily lives. Chimps use twigs to fish for termites; sea otters break open shellfish on rocks they selected; octopi carry coconut shell halves to later use as shelters.
The latest discovery has taken this assessment to new heights, literally. A team of researchers led by Mark Bonta and Robert Gosford in northern Australia has documented kites and falcons, colloquially termed "firehawks," intentionally carrying burning sticks to spread fire. While it has long been known that birds will take advantage of natural fires that cause insects, rodents and reptiles to flee and thus increase feeding opportunities, that they would intercede to spread fire to unburned locales is astounding.
It's thus no surprise that this study has attracted great attention as it adds intentionality and planning to the repertoire of non-human use of tools. Previous accounts of avian use of fire have been dismissed or at least viewed with some skepticism.
While new to western science, the behaviors of the nighthawks have long been known to the Alawa, MalakMalak, Jawoyn and other Indigenous peoples of northern Australia whose ancestors occupied their lands for tens of thousands of years. Contrary to most scientific studies, Bonta and Gosford's team foregrounded their research in traditional Indigenous ecological knowledge. They also note that local awareness of the behavior of the firehawks is ingrained within some of their ceremonial practices, beliefs and creation accounts.
The worldwide attention given to the firehawks article provides an opportunity to explore the double standard that exists concerning the acceptance of Traditional Knowledge by practitioners of western science.
Traditional Knowledge
Our knowledge of the world comes from many sources. In my field, archaeologists have long depended upon ethnographic sources of information—detailed observations or information derived directly from communities studied—to help develop or test interpretations about past peoples' lives.
In recent years, many scholars have become aware of the large body of information known as Traditional Knowledge (TK), Indigenous Knowledge (IK), or Traditional Ecological Knowledge (TEK), amongst other terms. These knowledge systems, developed over countless generations, are based on individual and collectively learned experiences and explanations of the world, verified by elders and conveyed and guided experiential learning, and by oral traditions and other means of record keeping.
Traditional Knowledge has today become a highly valued source of information for archaeologists, ecologists, biologists, ethnobotanists, climatologists and others. This information ranges from medicinal properties of plants and insights into the value of biological diversity to caribou migration patterns and the effects of intentional burning of the landscape to manage particular resources. For example, some climatology studies have incorporated Qaujimajatuqangit (Inuit traditional knowledge) to explain changes in sea ice conditions observed over many generations.
Despite the wide acknowledgement of their demonstrated value, many scientists continue to have had an uneasy alliance with TK and Indigenous oral histories. On the one hand, TK and other types of local knowledge are valued when they support or supplements archaeological, or other scientific evidence.
However, when the situation is reversed—when Traditional Knowledge is seen to challenge scientific "truths"—then its utility is questioned or dismissed as myth. Science is promoted as objective, quantifiable and the foundation for "real" knowledge creation or evaluation while TK may be seen as anecdotal, imprecise and unfamiliar in form.
Multiple Ways of Knowing
Are Indigenous and western systems of knowledge categorically antithetical? Or do they offer multiple points of entry into knowledge of the world, past and present? In many cases, science and history are catching up with what Indigenous peoples have long known.
In the past two decades, archaeologists and environmental scientists working in coastal British Columbia have come to recognize evidence of mariculture—the intentional management of marine resources—that pre-dates European settlement. Over the course of thousands of years, the ancestors of the Kwakwaka'wakw and other Indigenous groups there created and maintained what have become known as "clam gardens"—rock-walled, terrace-like constructions that provide ideal habit for butter clams and other edible shellfish.
To the Kwakwaka'wakw, these were known as loxiwey, according to Clan Chief Adam Dick (Kwaxsistalla) who has shared this term and his knowledge of the practice with researchers.
As marine ecologist Amy Groesbeck and colleagues have demonstrated, these structures increase shellfish productivity and resource security significantly. This resource management strategy reflects a sophisticated body of ecological understanding and practice that predates modern management systems by millennia.
These published research studies now prove that Indigenous communities knew about mariculture for generations, but Western scientists never asked them about it before. Once tangible remains were detected, it was clear that mariculture management was in use for thousands of years. A move is underway by various Indigenous communities in the region to restore and recreate clam gardens and put them back into use.
A second example demonstrates how Indigenous oral histories correct inaccurate or incomplete historical accounts. There are significant differences between Lakota and Cheyenne accounts of what transpired at the Battle of Greasy Grass (Little Big Horn) in 1876, and the historical accounts that appeared soon after the battle by white commentators.
The Lakota and Cheyenne can be considered more objective than white accounts of the battle that are tainted by Eurocentric bias. The ledger drawings of Red Horse, a Minneconjou Sioux participant in the battle, record precise details such as trooper's uniforms, the location of wounds on horses, and the distribution of Indian and white casualties.
In 1984, a fire at the battleground revealed military artifacts and human remains that prompted archaeological excavations. What this work revealed was a new, more accurate history of the battle that validated many elements of the Native American oral histories and accompanying pictographs and drawings of the events. However, without the archaeological evidence, many historians gave limited credence to the accounts obtained from the participating Native American warriors.
These examples, along with the firehawks study, demonstrate the reliability of Indigenous knowledge.
Opportunities at the Intersection
As ways of knowing, western and Indigenous Knowledge share several important and fundamental attributes. Both are constantly verified through repetition and verification, inference and prediction, empirical observations and recognition of pattern events.
While some actions leave no physical evidence (e.g. clam cultivation), and some experiments can't be replicated (e.g. cold fusion), in the case of Indigenous knowledge, the absence of "empirical evidence" can be damning in terms of wider acceptance.
Some types of Indigenous knowledge simply fall outside the realm of prior western understanding. In contrast to western knowledge, which tends to be text-based, reductionist, hierarchical and dependent on categorization (putting things into categories), Indigenous science does not strive for a universal set of explanations but is particularistic in orientation and often contextual.
One key attribute of western science is developing and then testing hypotheses to ensure rigor and replicability in interpreting empirical observations or making predictions. Although hypothesis testing is not a feature of TEK, rigor and replicability are not absent.
Whether or not traditional knowledge systems and scientific reasoning are mutually supportive, even contradictory lines of evidence have value. Employing TK-based observations and explanations within multiple working hypotheses ensures consideration of a variety of predictive, interpretive or explanatory possibilities not constrained by western expectation or logic. And hypotheses incorporating traditional knowledge-based information can lead the way toward unanticipated insights.
The travels of Glooscap, a major figure in Abenaki oral history and worldview, are found throughout the Mi'kmaw homeland of the Maritime provinces of eastern Canada. As a transformer, Glooscap created many landscape features. Anthropologist Trudy Sable (Saint Mary's University) has noted a significant degree of correlation between places named in Mi'kmaw legends, oral histories and recorded archaeological sites.
Indigenous peoples don't need western science to validate or legitimate their knowledge system. Some do appreciate the verification, and partnerships are developing worldwide with Indigenous knowledge holders and western scientists working together.
This includes Traditional Ecological Knowledge informing government policies on resource management in some instances. But it is nonetheless problematic when their knowledge, which has been dismissed for so long by so many, becomes a valuable data set or used selectively by academics and others.
To return to the firehawks example, one way to look at this is that the scientists confirmed what the Indigenous peoples have long known about the birds' use of fire. Or we can say that the western scientists finally caught up with TK after several thousand years.
Reposted with permission from our media associate YES! Magazine.
Japan will release radioactive wastewater from the failed Fukushima nuclear plant into the Pacific Ocean, the government announced on Tuesday.
The water will be treated before release, and the International Atomic Energy Agency said the country's plans were in keeping with international practice, The New York Times reported. But the plan is opposed by the local fishing community, environmental groups and neighboring countries. Within hours of the announcement, protesters had gathered outside government offices in Tokyo and Fukushima, according to NPR.
"The Japanese government has once again failed the people of Fukushima," Greenpeace Japan Climate and Energy Campaigner Kazue Suzuki said in a statement. "The government has taken the wholly unjustified decision to deliberately contaminate the Pacific Ocean with radioactive wastes."
The dilemma of how to dispose of the water is one ten years in the making. In March 2011, an earthquake and tsunami in northeastern Japan killed more than 19,000 people and caused three of six reactors at the Fukushima Daiichi nuclear power plant to melt down, The New York Times explained. This resulted in the biggest nuclear disaster since Chernobyl, and the cleanup efforts persist more than a decade later.
To keep the damaged reactors from melting down, cool water is flushed through them and then filtered to remove all radioactive material except for tritium. Up until now, the wastewater has been stored on site, but the government says the facility will run out of storage room next year. Water builds up at 170 tons per day, and there are now around 1.25 million tons stored in more than 1,000 tanks.
The government now plans to begin releasing the water into the ocean in two years time, according to a decision approved by cabinet ministers Tuesday. The process is expected to take decades.
"On the premise of strict compliance with regulatory standards that have been established, we select oceanic release," the government said in a statement reported by NPR.
Opposition to the move partly involves a lack of trust around what is actually in the water, as NPR reported. Both the government and Tokyo Electric Power Co., which operates the plant, say that the water only contains tritium, which cannot be separated from hydrogen and is only dangerous to humans in large amounts.
"But it turned out that the water contains more radioactive materials. But they didn't disclose that information before," Friends of the Earth Japan campaigner Ayumi Fukakusa told NPR. "That kind of attitude is not honest to people. They are making distrust by themselves."
In February, for example, a rockfish shipment was stopped when a sample caught near Fukushima tested positive for unsafe levels of cesium.
This incident also illustrates why local fishing communities oppose the release. Fish catches are already only 17.5 percent of what they were before the disaster, and the community worries the release of the water will make it impossible for them to sell what they do catch. They also feel the government went against its promises by deciding to release the water.
"They told us that they wouldn't release the water into the sea without the support of fishermen," fishery cooperative leader Kanji Tachiya told national broadcaster NHK, as CBS News reported. "We can't back this move to break that promise and release the water into the sea unilaterally."
Japan's neighbors also questioned the move. China called it "extremely irresponsible," and South Korea asked for a meeting with the Japanese ambassador in Seoul in response.
The U.S. State Department, however, said that it trusted Japan's judgement.
"In this unique and challenging situation, Japan has weighed the options and effects, has been transparent about its decision, and appears to have adopted an approach in accordance with globally accepted nuclear safety standards," the department said in a statement reported by The New York Times.
But environmentalists argue that the government could have found a way to continue storing waste.
"Rather than using the best available technology to minimize radiation hazards by storing and processing the water over the long term, they have opted for the cheapest option, dumping the water into the Pacific Ocean," Greenpeace's Suzuki said.
- Japan's New Environmental Minister Calls for Closing Down All ... ›
- Radiation Along Fukushima Rivers Up to 200 Times Higher Than ... ›
Scientists have maneuvered an underwater robot beneath Antarctica's "doomsday glacier" for the first time, and the resulting data is not reassuring.
Antarctica's Thwaites Glacier is referred to as the doomsday glacier because every year it contributes four percent to global sea level rise and acts as a stopper for the West Antarctic Ice Sheet. If the glacier were to collapse and take the sheet with it, that would raise global sea levels by around 10 feet. Now, a study published in Science Advances on April 9 warns that there is more warm water circling below the glacier than previously believed, making that collapse more likely.
"Our observations show warm water impinging from all sides on pinning points critical to ice-shelf stability, a scenario that may lead to unpinning and retreat," the study authors wrote. Pinning points are areas where the ice connects with the bedrock that provides stability, Earther explained.
The new paper is based on a 2019 expedition where an autonomous submarine named Ran explored the area beneath the glacier in order to measure the strength, salinity, oxygen content and temperature of the ocean currents that move beneath it, the International Thwaites Glacier Collaboration explained in a press release.
"These were the first measurements ever performed beneath the ice front of Thwaites glacier," Anna Wåhlin, lead author and University of Gothenburg oceanography professor, explained in the press release. "Global sea level is affected by how much ice there is on land, and the biggest uncertainty in the forecasts is the future evolution of the West Antarctic Ice Sheet."
This isn't the first instance revealing the presence of warm water beneath the glacier. In January 2020, researchers drilled a bore hole through the glacier and recorded temperature readings of more than two degrees Celsius above freezing, EcoWatch reported at the time.
However, Ran's measurements were taken earlier and allow scientists to understand the warmer water's movement in more detail. Scientists now know that water as warm as 1.05 degrees Celsius is circulating around the glacier's vulnerable pinning points.
"The worry is that this water is coming into direct contact with the underside of the ice shelf at the point where the ice tongue and shallow seafloor meet," Alastair Graham, study co-author and University of Southern Florida associate professor of geological oceanography, told Earther. "This is the last stronghold for Thwaites and once it unpins from the sea bed at its very front, there is nothing else for the ice shelf to hold onto. That warm water is also likely mixing in and around the grounding line, deep into the cavity, and that means the glacier is also being attacked at its feet where it is resting on solid rock."
While this sounds grim, the fact that researchers were able to obtain the data is crucial for understanding and predicting the impacts of the climate crisis.
"The good news is that we are now, for the first time, collecting data that will enable us to model the dynamics of Thwaite's glacier. This data will help us better calculate ice melting in the future. With the help of new technology, we can improve the models and reduce the great uncertainty that now prevails around global sea level variations," Wåhlin said in the press release.
- Scientists Identify Tipping Points for Antarctica Glacier - EcoWatch ›
- Record Warm Water Measured Beneath Antarctica's 'Doomsday ... ›
- Antarctica's 'Doomsday Glacier' Is Starting to Crack - EcoWatch ›
By Jessica Corbett
Lead partners of a global consortium of news outlets that aims to improve reporting on the climate emergency released a statement on Monday urging journalists everywhere to treat their coverage of the rapidly heating planet with the same same level of urgency and intensity as they have the COVID-19 pandemic.
Since Covering Climate Now (CCNow) was co-founded in 2019 by the Columbia Journalism Review and The Nation in association with The Guardian and WNYC, over 460 media outlets — including Common Dreams — with a combined reach of two billion people have become partner organizations.
CCNow and eight of those partners are now inviting media outlets to sign on to the Climate Emergency Statement, which begins: "It's time for journalism to recognize that the climate emergency is here. This is a statement of science, not politics."
The statement notes that a growing number of scientists are warning of the "climate emergency," from James Hansen, formerly of NASA, to the nearly 14,000 scientists from over 150 countries who have endorsed an emergency declaration.
"Why 'emergency'? Because words matter," the CCNow statement explains. "To preserve a livable planet, humanity must take action immediately. Failure to slash the amount of carbon dioxide in the atmosphere will make the extraordinary heat, storms, wildfires, and ice melt of 2020 routine and could 'render a significant portion of the Earth uninhabitable,' warned a recent Scientific American article."
CCNow's initiative comes after U.S. government scientists said last week that "carbon dioxide levels are now higher than at anytime in the past 3.6 million years," with 2020 featuring a global surface average for CO2 of 412.5 parts per million (PPM) — which very likely would have been higher if not for the pandemic.
As Common Dreams reported last week, amid rising atmospheric carbon and inadequate emissions reduction plans, an international coalition of 70 health professional and civil society groups called on world leaders to learn from the pandemic and "make health a central focus of national climate policies."
"The COVID-19 pandemic has taught us that health must be part and parcel of every government policy — and as recovery plans are drawn up this must apply to climate policy," said Jeni Miller, executive director of the Global Climate and Health Alliance.
CCNow also points to the public health crisis as a learning opportunity, describing the media's handling of it as "a useful model," considering that "guided by science, journalists have described the pandemic as an emergency, chronicled its devastating impacts, called out disinformation, and told audiences how to protect themselves (with masks, for example)."
"We need the same commitment to the climate story," the statement emphasizes.
Journalism should reflect what science says. https://t.co/MCbSRQMFch— The Nation (@The Nation)1618240621.0
CCNow executive director Mark Hertsgaard echoed that message Monday in The Nation, for which he serves as environment correspondent. He also addressed reservations that some reporters may have about supporting such a statement:
As journalists ourselves, we understand why some of our colleagues are cautious about initiatives like this Climate Emergency Statement, but we ask that they hear us out. Journalists rightly treasure our editorial independence, regarding it as essential to our credibility. To some of us, the term "climate emergency" may sound like advocacy or even activism — as if we're taking sides in a public dispute rather than simply reporting on it.
But the only side we're taking here is the side of science. As journalists, we must ground our coverage in facts. We must describe reality as accurately as we can, undeterred by how our reporting may appear to partisans of any stripe and unintimidated by efforts to deny science or otherwise spin facts.
According to Hertsgaard, "Signing the Climate Emergency Statement is a way for journalists and news outlets to alert their audiences that they will do justice to that story."
"But whether a given news outlet makes a public declaration by signing the statement," he added, "is less important than whether the outlet's coverage treats climate change like the emergency that scientists say it is."
Editor's Note: Common Dreams has signed on to the Climate Emergency Statement, which can be read in full below:
COVERING CLIMATE NOW STATEMENT ON THE CLIMATE EMERGENCY:
Journalism should reflect what the science says: the climate emergency is here.
It's time for journalism to recognize that the climate emergency is here.
This is a statement of science, not politics.
Thousands of scientists — including James Hansen, the NASA scientist who put the problem on the public agenda in 1988, and David King and Hans Schellnhuber, former science advisers to the British and German governments, respectively — have said humanity faces a "climate emergency."
Why "emergency"? Because words matter. To preserve a livable planet, humanity must take action immediately. Failure to slash the amount of carbon dioxide in the atmosphere will make the extraordinary heat, storms, wildfires, and ice melt of 2020 routine and could "render a significant portion of the Earth uninhabitable," warned a recent Scientific American article.
The media's response to Covid-19 provides a useful model. Guided by science, journalists have described the pandemic as an emergency, chronicled its devastating impacts, called out disinformation, and told audiences how to protect themselves (with masks, for example).
We need the same commitment to the climate story.
We, the undersigned, invite journalists and news organizations everywhere to add your name to this Covering Climate Now statement on the climate emergency.
Signed,
- Covering Climate Now
- Scientific American
- Columbia Journalism Review
- The Nation
- The Guardian
- Noticias Telemundo
- Al Jazeera English
- Asahi Shimbun
- La Repubblica
Reposted with permission from Common Dreams.
- The Media's Climate Coverage Is Improving, but Time Is Very Short ›
- UN Releases Scientific Blueprint to Address Climate Emergencies ... ›
- 'Climate Emergency' Named Oxford Word of the Year - EcoWatch ›
- New Zealand Declares Climate Emergency - EcoWatch ›
- New Bill Says Biden Must Declare a National Climate Emergency ... ›
Scientists consider plastic pollution one of the "most pressing environmental and social issues of the 21st century," but so far, microplastic research has mostly focused on the impact on rivers and oceans.
However, a new study from researchers at Cornell and Utah State University highlights the increasing threat of airborne microplastics "spiraling around the globe," The Guardian reported.
Plastic waste breaks down into smaller pieces until it becomes microscopic and gets swept up into the atmosphere, where it rides the jet stream and travels across continents, the Cornell Chronicle reported. Researchers discovered this has led to a global plastic cycle as microplastics permeate the environment, according to The Guardian.
"We found a lot of legacy plastic pollution everywhere we looked; it travels in the atmosphere and it deposits all over the world," Janice Brahney, lead author of the study and Utah State University assistant professor of natural resources, told the Cornell Chronicle. "This plastic is not new from this year. It's from what we've already dumped into the environment over several decades."
In the study, published in the journal Proceedings of the National Academy of Sciences, researchers tested the most likely sources of more than 300 samples of airborne microplastics from 11 sites across the western U.S. To their surprise, the researchers found that almost none of the atmospheric microplastics came from plastic waste in cities and towns. "It just didn't work out that way," Professor Natalie Mahowald from Cornell University, who was part of the research team, told The Guardian.
It turns out that 84 percent of atmospheric microplastics came from roads, 11 percent from oceans and five percent from agricultural soil dust, the scientists wrote.
"We did the modeling to find out the sources, not knowing what the sources might be," Mahowald told the Cornell Chronicle. "It's amazing that this much plastic is in the atmosphere at that level, and unfortunately accumulating in the oceans and on land and just recirculating and moving everywhere, including remote places."
The scientists say the level of plastic pollution is expected to increase, raising "questions on the impact of accumulating plastics in the atmosphere on human health. The inhalation of particles can be irritating to lung tissue and lead to serious diseases," The Guardian reported.
The study coincides with other recent reports by researchers, who confirmed the existence of microplastics in New Zealand and Moscow, where airborne plastics are turning up in remote parts of snowy Siberia.
In the most recent study, scientists also learned that plastic particles were more likely to be blown from fields than roads in Africa and Asia, The Guardian reported.
As plastic production increases every year, the scientists stressed that there remains "large uncertainties in the transport, deposition, and source attribution of microplastics," and wrote that further research should be prioritized.
"What we're seeing right now is the accumulation of mismanaged plastics just going up. Some people think it's going to increase by tenfold [per decade]," Mahowald told The Guardian. "But maybe we could solve this before it becomes a huge problem, if we manage our plastics better, before they accumulate in the environment and swirl around everywhere."
- Microplastics Are Increasing in Our Lives, New Research Finds ... ›
- Microplastics Found in Human Organs for First Time - EcoWatch ›
- New Study: 15.5 Million Tons of Microplastics Litter Ocean Floor ... ›
By Michel Penke
More than every second person in the world now has a cellphone, and manufacturers are rolling out bigger, better, slicker models all the time. Many, however, have a bloody history.
Though made in large part of plastic, glass, ceramics, gold and copper, they also contain critical resources. The gallium used for LEDs and the camera flash, the tantalum in capacitors and indium that powers the display were all pulled from the ground — at a price for nature and people.
"Mining raw materials is always problematic, both with regard to human rights and ecology," said Melanie Müller, raw materials expert of the German think tank SWP. "Their production process is pretty toxic."
The gallium and indium in many phones comes from China or South Korea, the tantalum from the Democratic Republic of Congo or Rwanda. All in, such materials comprise less than ten grams of a phone's weight. But these grams finance an international mining industry that causes radioactive earth dumps, poisoned groundwater and Indigenous population displacement.
Environmental Damage: 'Nature Has Been Overexploited'
The problem is that modern technologies don't work without what are known as critical raw materials. Collectively, solar panels, drones, 3D printers and smartphone contain as many as 30 of these different elements sourced from around the globe. A prime example is lithium from Chile, which is essential in the manufacture of batteries for electric vehicles.
"No one, not even within the industry, would deny that mining lithium causes enormous environmental damage," Müller explained, in reference to the artificial lakes companies create when flushing the metal out of underground brine reservoirs. "The process uses vast amounts of water, so you end up with these huge flooded areas where the lithium settles."
This means of extraction results in the destruction and contamination of the natural water system. Unique plants and animals lose access to groundwater and watering holes. There have also been reports of freshwater becoming salinated due to extensive acidic waste water during lithium mining.
But lithium is not the only raw material that causes damage. Securing just one ton of rare earth elements produces 2,000 tons of toxic waste, and has devastated large regions of China, said Günther Hilpert, head of the Asia Research Division of the German think tank SWP.
He says companies there have adopted a process of spraying acid over the mining areas in order to separate the rare earths from other ores, and that mined areas are often abandoned after excavation.
"They are no longer viable for agricultural use," Hilpert said. "Nature has been overexploited."
China is not the only country with low environmental mining standards and poor resource governance. In Madagascar, for example, a thriving illegal gem and metal mining sector has been linked to rainforest depletion and destruction of natural lemur habitats.
States like Madagascar, Rwanda and the DRC score poorly on the Environmental Performance Index that ranks 180 countries for their effort on factors including conservation, air quality, waste management and emissions. Environmentalists are therefore particularly concerned that these countries are mining highly toxic materials like beryllium, tantalum and cobalt.
But it is not only nature that suffers from the extraction of high-demand critical raw materials.
"It is a dirty, toxic, partly radioactive industry," Hilpert said. "China, for example, has never really cared about human rights when it comes to achieving production targets."
Dirty, Toxic, Radioactive: Working in the Mining Sector
One of the most extreme examples is Baotou, a Chinese city in Inner Mongolia, where rare earth mining poisoned surrounding farms and nearby villages, causing thousands of people to leave the area.
In 2012, The Guardian described a toxic lake created in conjunction with rare earth mining as "a murky expanse of water, in which no fish or algae can survive. The shore is coated with a black crust, so thick you can walk on it. Into this huge, 10 sq km tailings pond nearby factories discharge water loaded with chemicals used to process the 17 most sought after minerals in the world."
Local residents reported health issues including aching legs, diabetes, osteoporosis and chest problems, The Guardian wrote.
South Africa has also been held up for turning a blind eye to the health impacts of mining.
"The platinum sector in South Africa has been criticized for performing very poorly on human rights — even within the raw materials sector," Müller said.
In 2012, security forces killed 34 miners who had been protesting poor working conditions and low wages at a mine owned by the British company Lonmin. What became known as the "Marikana massacre" triggered several spontaneous strikes across the country's mining sector.
Müller says miners can still face exposure to acid drainage — a frequent byproduct of platinum mining — that can cause chemical burns and severe lung damage. Though this can be prevented by a careful waste system.
Some progress was made in 2016 when the South African government announced plans to make mining companies pay $800 million (€679 million) for recycling acid mine water. But they didn't all comply. In 2020, activists sued Australian-owned mining company Mintails and the government to cover the cost of environmental cleanup.
Another massive issue around mining is water consumption. Since the extraction of critical raw materials is very water intensive, drought prone countries such as South Africa, have witnessed an increase in conflicts over supply.
For years, industry, government and the South African public debated – without a clear agreement – whether companies should get privileged access to water and how much the population may suffer from shortages.
Mining in Brazil: Replacing Nature, People, Land Rights
Beyond the direct health and environmental impact of mining toxic substances, quarrying critical raw materials destroys livelihoods, as developments in Brazil demonstrate.
"Brazil is the major worldwide niobium producer and reserves in [the state of] Minas Gerais would last more than 200 years [at the current rate of demand]," said Juliana Siqueira-Gay, environmental engineer and Ph.D. student at the University of São Paulo.
While the overall number of niobium mining requests is stagnating, the share of claims for Indigenous land has skyrocketed from 3 to 36 percent within one year. If granted, 23 percent of the Amazon forest and the homeland of 222 Indigenous groups could fall victim to deforestation in the name of mining, a study by Siqueira-Gay finds.
In early 2020, Brazilian President Jair Bolsonaro signed a bill which would allow corporations to develop areas populated by Indigenous communities in the future. The law has not yet entered into force, but "this policy could have long-lasting negative effects on Brazil's socio-biodiversity," said Siqueira-Gay.
One example are the niobium reserves in Seis Lagos, in Brazil's northeast, which could be quarried to build electrolytic capacitors for smartphones.
"They overlap the Balaio Indigenous land and it would cause major impacts in Indigenous communities by clearing forests responsible for providing food, raw materials and regulating the local climate," Siqueira-Gay explained.
She says scientific good practice guidelines offer a blueprint for sustainable mining that adheres to human rights and protects forests. Quarries in South America — and especially Brazil — funded by multilaterial banks like the International Finance Corporation of the World Bank Group have to follow these guidelines, Siqueira-Gay said.
They force companies to develop sustainable water supply, minimize acid exposure and re-vegetate mined surfaces. "First, negative impacts must be avoided, then minimized and at last compensated — not the other way around."
Reposted with permission from DW.