Quantcast
Environmental News for a Healthier Planet and Life

Harvard Researchers Connect Climate Change to Higher Skin Cancer Rates

Climate

HarvardScience

By Peter Reuell

[Editor's note: As we begin to enjoy warmer weather, we need to connect the dots between climate change and its impacts on human health, including skin cancer. The World Health Organization, provides detailed information on risks to humans from stratospheric ozone depletion and ultraviolet radiation.]

Photo courtesy of Shutterstock

For decades, scientists have known that the effects of global climate change could have a devastating impact across the globe, but Harvard researchers say there is now evidence that it may also have a dramatic impact on public health.

In the July 27 issue of Science, a team of researchers led by James G. Anderson, the Philip S. Weld Professor of Atmospheric Chemistry, warns that a recently discovered connection between climate change and depletion of the ozone layer over the U.S. could allow more damaging ultraviolet (UV) radiation to reach the Earth’s surface, leading to increased incidence of skin cancer.

In the system described by Anderson and his team, water vapor injected into the stratosphere by powerful thunderstorms converts stable forms of chlorine and bromine into free radicals capable of transforming ozone molecules into oxygen. Recent studies have suggested that the number and intensity of such storms are linked to climate change.

“If you were to ask me where this fits into the spectrum of things I worry about, right now it’s at the top of the list,” Anderson said. “What this research does is connect, for the first time, climate change with ozone depletion, and ozone loss is directly tied to increases in skin cancer incidence, because more ultraviolet radiation is penetrating the atmosphere.”

How this process will evolve over time is a mystery, he said.

“We don’t know what the development of this has been—we don’t have measurements of this deep convective injection of water into the stratosphere that go back in time,” Anderson said.

“But the best guide for the evolution of this is to look at the research that connects climate change with severe storm intensity and frequency, and it’s clear that there is a developing scientific case that the addition of carbon dioxide to the atmosphere is increasing climate change, and in turn driving severe storm intensity and frequency.”

The link between ozone loss and increased incidence of skin cancer has been extensively studied, Anderson said.

“There has been a major effort by the medical community to define the relationship between decreases in ozone and the subsequent increases in skin cancer,” he said. “The answer is quite clear: If you multiply the fractional decrease in ozone protection by about three, you get the increase in skin cancer incidence. There are 1 million new skin cancer cases in the U.S. annually—it’s the most common form of cancer, and it’s one that’s increasing in spite of all the medical research devoted to it.”

But it isn’t only humans who have to worry about the effects of increased UV radiation.

Many crops, particularly staple crops grown for human consumption—including wheat, soybeans, and corn—could suffer damage to their DNA, Anderson said.

Ironically, Anderson said, the discovery that climate change might be driving ozone loss happened virtually by accident.

Although they had worked since the mid-1980s to investigate ozone depletion in the Arctic and Antarctic, by the early 2000s, Anderson’s team had turned its attention to climate studies, in particular the question of how convective clouds—updrafts that cause storms to build high into the sky—contribute to the creation of cirrus clouds.

“It was in the process of looking at that mechanism that we came to this unexpected observation: that the convective clouds in these storm systems over the U.S. are reaching far deeper into the stratosphere than we ever expected,” Anderson said.

Earlier tests performed in the Arctic had demonstrated that water vapor was a key component in creating the free-radical compounds that break down ozone, but the latest finding is much more troubling, Anderson said, because it suggests the process can happen at much higher temperatures than initially suspected.

“The bottom line is that if you increase the water vapor concentration, you actually increase the threshold temperature for executing this chemical conversion—from the stable forms of chlorine to the free-radical form,” Anderson said. “If the amount of water vapor and the temperature over the U.S. satisfies the conditions for rapid conversion of inorganic chlorine to this free-radical form, we’ve got a real problem, because the chemistry is identical to what we previously demonstrated is taking place over the Arctic.”

Also surprising, he added, was the realization that, to throw water vapor high into the atmosphere, storms needn’t be unusually large.

“In my mind, this is not just a broad public health issue,” Anderson said. “This is about actually being able to step out into the sunlight—it’s about your children and your children’s health. Of course, we don’t know how rapidly the frequency and intensity of these storms will increase, so we can’t place a time scale on this problem, but the core issue here is quite straightforward and simple, because we understand this chemistry.”

Visit EcoWatch’s CLIMATE CHANGE and BIODIVERSITY pages for more related news on this topic.

——–

Click here to tell Congress to Expedite Renewable Energy.

 

EcoWatch Daily Newsletter

Pexels

By Charli Shield

At unsettling times like the coronavirus outbreak, it might feel like things are very much out of your control. Most routines have been thrown into disarray and the future, as far as the experts tell us, is far from certain.

Read More Show Less
Pie Ranch in San Mateo, California, is a highly diverse farm that has both organic and food justice certification. Katie Greaney

By Elizabeth Henderson

Farmworkers, farmers and their organizations around the country have been singing the same tune for years on the urgent need for immigration reform. That harmony turns to discord as soon as you get down to details on how to get it done, what to include and what compromises you are willing to make. Case in point: the Farm Workforce Modernization Act (H.R. 5038), which passed in the House of Representatives on Dec. 11, 2019, by a vote of 260-165. The Senate received the bill the next day and referred it to the Committee on the Judiciary, where it remains. Two hundred and fifty agriculture and labor groups signed on to the United Farm Workers' (UFW) call for support for H.R. 5038. UFW President Arturo Rodriguez rejoiced:

Read More Show Less
Sponsored
A woman walks to her train in Grand Central Terminal as New York City attempts to slow down the spread of coronavirus through social distancing on March 27. John Lamparski / Getty Images

By Julia Conley

A council representing more than 800,000 doctors across the U.S. signed a letter Friday imploring President Donald Trump to reverse his call for businesses to reopen by April 12, warning that the president's flouting of the guidance of public health experts could jeopardize the health of millions of Americans and throw hospitals into even more chaos as they fight the coronavirus pandemic.

Read More Show Less
polaristest / Flickr / CC BY-NC-ND 2.0

By Melissa Kravitz Hoeffner

Over six gallons of water are required to produce one gallon of wine. "Irrigation, sprays, and frost protection all [used in winemaking] require a lot of water," explained winemaker and sommelier Keith Wallace, who's also a professor and the founder of the Wine School of Philadelphia, the largest independent wine school in the U.S. And water waste is just the start of the climate-ruining inefficiencies commonplace in the wine industry. Sustainably speaking, climate change could be problematic for your favorite glass of wine.

Read More Show Less
Pixabay

By Rachael Link, MS, RD

Spinach is a true nutritional powerhouse, as it's rich in vitamins, minerals, and antioxidants.

Read More Show Less