
As editor of Greenpeace USA's blog for almost a year now, I’ve had the privilege of supporting some amazing actions from behind the scenes. I wrote in amazement as 13 climbers put themselves—literally—between Shell and the Arctic last summer, and I was equally inspired watching thousands mobilize in Paris during international climate talks a few months later, to name just a few.
As rewarding as it is to tell the story of these actions from my computer, this weekend I’m taking on a new role: activist. I’ll be joining thousands of people at Democracy Awakening, rallying on Capitol Hill to build a democracy that puts people before corporate interests.
I’m joining because I think our voices should speak louder than their money (yep, that’s me in the photo above), and I’m not the only one. If any of the reasons below strike a chord with you, be sure to add your voice to the call for a Democracy Awakening.
1. Because we urgently need to restore voting rights.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
Voting rights are more threatened right now than at any time since the Voting Rights Act was passed 50 years ago. This year, 17 states will have new voting restrictions in place targeting people of color, low-income groups, students, and the elderly.
Already, we’ve seen barriers to primary voting in Alabama, Arizona, Nevada, North Carolina, and Wisconsin make headlines. Arizona’s primary was such a disaster that the Department of Justice is investigating potential voter discrimination.
2. Because it’s time get big money out of politics.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
It’s not surprising that the same elected officials denying the science of climate change are the ones taking the most money from companies like Shell, Exxon, and BP. When our lawmakers are bought and sold by industry lobbyists, it means they’re not listening to people like you and me.
That means that getting corporate money out of politics isn’t just a solution for fixing democracy. It’s the first step towards real progress on tackling climate change and so many of the issues we care about.
3. Because when we unite our movements, we are stronger.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
Working alone, none of us have the power to turn around a democracy stalled by corporate interests.
That’s why more than 260 groups have come together to form Democracy Awakening. These include civil rights groups like NAACP, labor unions like the Communications Workers of America, and of course environmental groups like Greenpeace. Each of these 260 groups knows that our only chance of winning on any of our causes is to come together to fix democracy first.
4. Because democracy has everything to do with being an environmentalist.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
Our democracy should represent the interests of the people—and that definitely includes a safe climate and healthy environment.
Getting money out of politics means giving people like you and me more influence than companies like Shell and Exxon. Restoring voting rights means empowering those most affected by environmental injustice.
5. Because we have a right to peaceful protest.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
The U.S. was founded on the idea of equal representation for all, but from the very beginning we’ve had to fight for the right to be heard.
By standing up for our democracy this weekend, we’re inspired by the legacy of abolitionists, suffragettes, civil rights activists and more who broke down barriers to political participation.
6. Because people power is our best chance to be heard.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
In an ideal democracy, we wouldn’t have to mobilize en masse for our elected leaders to hear our demands to act on climate, civil rights and other critical issues. But right now, people power is our best chance to get Washington’s attention and force elected officials to listen to us, not lobbyists.
The more visible, united, and vocal we can be, the better chance we have of building a democracy that truly represents all Americans.
7. Because we’re don’t have to wait anymore—the time to act is now.
Democracy Awakening is a movement build a democracy that represents all Americans, and it's powered by people like you. See more stories and join us at www.democracyawakening.org. Photo by Ian Foulk / Greenpeace.
The challenges we face are too urgent to continue working within the system, casting our votes each year and hoping the leaders we elect will get it right. It’s time for the people to take matters into our hands and give our elected officials the wake up call they’ve been missing.
Ready to add your story to the list? Join the Democracy Awakening movement today!
YOU MIGHT ALSO LIKE
40 Students Arrested Demanding Their Schools Divest From Fossil Fuels
March 2016 Was Hottest on Record by Greatest Margin Yet Seen for Any Month
By Lynne Peeples
Editor's note: This story is part of a nine-month investigation of drinking water contamination across the U.S. The series is supported by funding from the Park Foundation and Water Foundation. Read the launch story, "Thirsting for Solutions," here.
In late September 2020, officials in Wrangell, Alaska, warned residents who were elderly, pregnant or had health problems to avoid drinking the city's tap water — unless they could filter it on their own.
Unintended Consequences
<p>Chemists first discovered disinfection by-products in treated drinking water in the 1970s. The trihalomethanes they found, they determined, had resulted from the reaction of chlorine with natural organic matter. Since then, scientists have identified more than 700 additional disinfection by-products. "And those only represent a portion. We still don't know half of them," says Richardson, whose lab has identified hundreds of disinfection by-products. </p>What’s Regulated and What’s Not?
<p>The U.S. Environmental Protection Agency (EPA) currently regulates 11 disinfection by-products — including a handful of trihalomethanes (THM) and haloacetic acids (HAA). While these represent only a small fraction of all disinfection by-products, EPA aims to use their presence to indicate the presence of other disinfection by-products. "The general idea is if you control THMs and HAAs, you implicitly or by default control everything else as well," says Korshin.</p><p>EPA also requires drinking water facilities to use techniques to reduce the concentration of organic materials before applying disinfectants, and regulates the quantity of disinfectants that systems use. These rules ultimately can help control levels of disinfection by-products in drinking water.</p>Click the image for an interactive version of this chart on the Environmental Working Group website.
<p>Still, some scientists and advocates argue that current regulations do not go far enough to protect the public. Many question whether the government is regulating the right disinfection by-products, and if water systems are doing enough to reduce disinfection by-products. EPA is now seeking public input as it considers potential revisions to regulations, including the possibility of regulating additional by-products. The agency held a <a href="https://www.epa.gov/dwsixyearreview/potential-revisions-microbial-and-disinfection-byproducts-rules" target="_blank">two-day public meeting</a> in October 2020 and plans to hold additional public meetings throughout 2021.</p><p>When EPA set regulations on disinfection by-products between the 1970s and early 2000s, the agency, as well as the scientific community, was primarily focused on by-products of reactions between organics and chlorine — historically the most common drinking water disinfectant. But the science has become increasingly clear that these chlorinated chemicals represent a fraction of the by-product problem.</p><p>For example, bromide or iodide can get caught up in the reaction, too. This is common where seawater penetrates a drinking water source. By itself, bromide is innocuous, says Korshin. "But it is extremely [reactive] with organics," he says. "As bromide levels increase with normal treatment, then concentrations of brominated disinfection by-products will increase quite rapidly."</p><p><a href="https://pubmed.ncbi.nlm.nih.gov/15487777/" target="_blank">Emerging</a> <a href="https://pubs.acs.org/doi/10.1021/acs.est.7b05440" target="_blank" rel="noopener noreferrer">data</a> indicate that brominated and iodinated by-products are potentially more harmful than the regulated by-products.</p><p>Almost half of the U.S. population lives within 50 miles of either the Atlantic or Pacific coasts, where saltwater intrusion can be a problem for drinking water supplies. "In the U.S., the rule of thumb is the closer to the sea, the more bromide you have," says Korshin, noting there are also places where bromide naturally leaches out from the soil. Still, some coastal areas tend to be spared. For example, the city of Seattle's water comes from the mountains, never making contact with seawater and tending to pick up minimal organic matter.</p><p>Hazardous disinfection by-products can also be an issue with desalination for drinking water. "As <a href="https://ensia.com/features/can-saltwater-quench-our-growing-thirst/" target="_blank" rel="noopener noreferrer">desalination</a> practices become more economical, then the issue of controlling bromide becomes quite important," adds Korshin.</p>Other Hot Spots
<p>Coastal areas represent just one type of hot spot for disinfection by-products. Agricultural regions tend to send organic matter — such as fertilizer and animal waste — into waterways. Areas with warmer climates generally have higher levels of natural organic matter. And nearly any urban area can be prone to stormwater runoff or combined sewer overflows, which can contain rainwater as well as untreated human waste, industrial wastewater, hazardous materials and organic debris. These events are especially common along the East Coast, notes Sydney Evans, a science analyst with the nonprofit Environmental Working Group (EWG, a collaborator on <a href="https://ensia.com/ensia-collections/troubled-waters/" target="_blank">this reporting project</a>).</p><p>The only drinking water sources that might be altogether free of disinfection by-products, suggests Richardson, are private wells that are not treated with disinfectants. She used to drink water from her own well. "It was always cold, coming from great depth through clay and granite," she says. "It was fabulous."</p><p>Today, Richardson gets her water from a city system that uses chloramine.</p>Toxic Treadmill
<p>Most community water systems in the U.S. use chlorine for disinfection in their treatment plant. Because disinfectants are needed to prevent bacteria growth as the water travels to the homes at the ends of the distribution lines, sometimes a second round of disinfection is also added in the pipes.</p><p>Here, systems usually opt for either chlorine or chloramine. "Chloramination is more long-lasting and does not form as many disinfection by-products through the system," says Steve Via, director of federal relations at the American Water Works Association. "Some studies show that chloramination may be more protective against organisms that inhabit biofilms such as Legionella."</p>Alternative Approaches
<p>When he moved to the U.S. from Germany, Prasse says he immediately noticed the bad taste of the water. "You can taste the chlorine here. That's not the case in Germany," he says.</p><p>In his home country, water systems use chlorine — if at all — at lower concentrations and at the very end of treatment. In the Netherlands, <a href="https://dwes.copernicus.org/articles/2/1/2009/dwes-2-1-2009.pdf" target="_blank">chlorine isn't used at all</a> as the risks are considered to outweigh the benefits, says Prasse. He notes the challenge in making a convincing connection between exposure to low concentrations of disinfection by-products and health effects, such as cancer, that can occur decades later. In contrast, exposure to a pathogen can make someone sick very quickly.</p><p>But many countries in Europe have not waited for proof and have taken a precautionary approach to reduce potential risk. The emphasis there is on alternative approaches for primary disinfection such as ozone or <a href="https://www.pbs.org/wgbh/nova/article/eco-friendly-way-disinfect-water-using-light/" target="_blank" rel="noopener noreferrer">ultraviolet light</a>. Reverse osmosis is among the "high-end" options, used to remove organic and inorganics from the water. While expensive, says Prasse, the method of forcing water through a semipermeable membrane is growing in popularity for systems that want to reuse wastewater for drinking water purposes.</p><p>Remucal notes that some treatment technologies may be good at removing a particular type of contaminant while being ineffective at removing another. "We need to think about the whole soup when we think about treatment," she says. What's more, Remucal explains, the mixture of contaminants may impact the body differently than any one chemical on its own. </p><p>Richardson's preferred treatment method is filtering the water with granulated activated carbon, followed by a low dose of chlorine.</p><p>Granulated activated carbon is essentially the same stuff that's in a household filter. (EWG recommends that consumers use a <a href="https://www.ewg.org/tapwater/reviewed-disinfection-byproducts.php#:~:text=EWG%20recommends%20using%20a%20home,as%20trihalomethanes%20and%20haloacetic%20acids." target="_blank" rel="noopener noreferrer">countertop carbon filter</a> to reduce levels of disinfection by-products.) While such a filter "would remove disinfection by-products after they're formed, in the plant they remove precursors before they form by-products," explains Richardson. She coauthored a <a href="https://pubs.acs.org/doi/10.1021/acs.est.9b00023" target="_blank" rel="noopener noreferrer">2019 paper</a> that concluded the treatment method is effective in reducing a wide range of regulated and unregulated disinfection by-products.</p><br>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992, and is still one of relatively few full-scale plants that uses the technology. Courtesy of Greater Cincinnati Water Works.
<p>Despite the technology and its benefits being known for decades, relatively few full-scale plants use granulated active carbon. They often cite its high cost, Richardson says. "They say that, but the city of Cincinnati [Ohio] has not gone bankrupt using it," she says. "So, I'm not buying that argument anymore."</p><p>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992. On a video call in December, Jeff Swertfeger, the superintendent of Greater Cincinnati Water Works, poured grains of what looks like black sand out of a glass tube and into his hand. It was actually crushed coal that has been baked in a furnace. Under a microscope, each grain looks like a sponge, said Swertfeger. When water passes over the carbon grains, he explained, open tunnels and pores provide extensive surface area to absorb contaminants.</p><p>While the granulated activated carbon initially was installed to address chemical spills and other industrial contamination concerns in the Ohio River, Cincinnati's main drinking water source, Swertfeger notes that the substance has turned out to "remove a lot of other stuff, too," including <a href="https://ensia.com/features/drinking-water-contamination-pfas-health/" target="_blank" rel="noopener noreferrer">PFAS</a> and disinfection by-product precursors.</p><p>"We use about one-third the amount of chlorine as we did before. It smells and tastes a lot better," he says. "The use of granulated activated carbon has resulted in lower disinfection by-products across the board."</p><p>Richardson is optimistic about being able to reduce risks from disinfection by-products in the future. "If we're smart, we can still kill those pathogens and lower our chemical disinfection by-product exposure at the same time," she says.</p><p><em>Reposted with permission from </em><em><a href="https://ensia.com/features/drinking-water-disinfection-byproducts-pathogens/" target="_blank">Ensia</a>. </em><a href="https://www.ecowatch.com/r/entryeditor/2649953730#/" target="_self"></a></p>EcoWatch Daily Newsletter
At a time of impending global food scarcity, cell-based meats and seafood have been heralded as the future of food.
- Most Meat Will Be Plant-Based or Lab-Grown in 20 Years, Analysts ... ›
- Lab-Grown Meat Debate Overlooks Cows' Range of Use Worldwide ... ›
- Will Plant-Based Meat Become the New Fast Food? - EcoWatch ›
Trending
One city in New Zealand knows what its priorities are.
Dunedin, the second largest city on New Zealand's South Island, has closed a popular road to protect a mother sea lion and her pup, The Guardian reported.
piyaset / iStock / Getty Images Plus
In an alarming new study, scientists found that climate change is already harming children's diets.
- No Country Is Protecting Children's Health, Major Study Finds ... ›
- 'Every Child Born Today Will Be Profoundly Affected by Climate ... ›
By Jeff Masters, Ph.D.
Earth had its second-warmest year on record in 2020, just 0.02 degrees Celsius (0.04°F) behind the record set in 2016, and 0.98 degrees Celsius (1.76°F) above the 20th-century average, NOAA reported January 14.
Figure 1. Departure of temperature from average for 2020, the second-warmest year the globe has seen since record-keeping began in 1880, according to NOAA. Record-high annual temperatures over land and ocean surfaces were measured across parts of Europe, Asia, southern North America, South America, and across parts of the Atlantic, Indian, and Pacific oceans. No land or ocean areas were record cold for the year. NOAA National Centers for Environmental Information
Figure 2. Total ocean heat content (OHC) in the top 2000 meters from 1958-2020. Cheng et al., Upper Ocean Temperatures Hit Record High in 2020, Advances in Atmospheric Sciences
Figure 3. Departure of sea surface temperature from average in the benchmark Niño 3.4 region of the eastern tropical Pacific (5°N-5°S, 170°W-120°W). Sea surface temperature were approximately one degree Celsius below average over the past month, characteristic of moderate La Niña conditions. Tropical Tidbits
- NASA and NOAA: Last Decade Was the Hottest on Record - EcoWatch ›
- Earth Just Had Its Hottest September Ever Recorded, NOAA Says ... ›