Environmental News for a Healthier Planet and Life

What Wildfire Smoke Plumes Reveal About Air Quality Over Time

What Wildfire Smoke Plumes Reveal About Air Quality Over Time
Flames and heavy smoke are seen from the Apple Fire on August 1, 2020 in Cherry Valley, California. David McNew / Getty Images

By Brett B. Palm

The year 2020 will be remembered for many reasons, including its record-breaking wildfires that turned San Francisco's skies an apocalyptic shade of red and blanketed large parts of the West in smoke for weeks on end.

California experienced five of its six largest fires on record in 2020, including the first modern "gigafire," a wildfire that burned over 1 million acres. Colorado saw its three largest fires on record.

While the smoke can make for beautiful sunsets, it can also have dire consequences for human health.

I am an atmospheric chemist, and the atmosphere is my laboratory. When I look at the sky, I see a mixture of many thousands of different chemical compounds interacting with each other and with sunlight.

The reactions and transformations in the atmosphere cause wildfire smoke to change dramatically as it travels downwind, and studies have shown that it can grow more toxic as it ages. In order to accurately forecast the effects of wildfire emissions on downwind populations and issue more-targeted air quality warnings as wildfire seasons worsen, we have to understand which chemicals are being emitted and how smoke changes with time.

To figure that out, my colleagues and I flew airplanes into the smoke plumes of some of the West's large wildfires.

How We Study Wildfires

Large wildfires and the way wind carries their smoke cannot be easily replicated in a laboratory. This makes them difficult to study. One of the best ways to learn about real wildfire smoke chemistry is to sample it directly in the atmosphere.

In 2018 and 2019, my colleagues and I crisscrossed the sky over active wildfires in specialized airplanes loaded with scientific instruments. Each instrument is designed to sample a different part of the smoke, often by literally sticking a tube out the window.

To sample smoke as it moves downwind, scientists flew back and forth across smoke plumes. The gray lines are the flights from 2018. They turn red where the path crossed a smoke plume. Brett Palm/University of Washington, CC BY-ND

Scientific aircraft used for these experiments are filled with instruments that measure wildfire smoke in different ways. Brett Palm/University of Washington, CC BY-ND

Wildfire smoke is far more complex and dynamic than meets the eye. It contains thousands of different compounds, most of which are molecules containing various amounts of carbon, hydrogen, nitrogen and oxygen atoms. There are gases (individual molecules) as well as particles (millions of molecules coagulated together).

No single instrument can measure all of these molecules at once. In fact, some specific compounds are a challenge to measure at all. Many scientists, including myself, dedicate their careers to designing and building new instruments to improve our measurements and continue to advance our understanding of the atmosphere and how it affects us.

Smoke plumes from western wildfires reached across the U.S. in mid-September 2020. Joshua Stevens/NASA Earth Observatory

In newly published research from the 2018 wildfires, my colleagues and I showed how the smoke particles changed rapidly as they were carried downwind.

Some of the particles were evaporating into gases, similar to a rain puddle evaporating into water vapor when the Sun comes out. At the same time, some of the gases in smoke were going through reactions to form new particles, similar to water vapor condensing to form a cloud or dew droplets. Meanwhile, chemical reactions were occurring, changing the molecules themselves.

As these molecules reacted with sunlight and other gases in the atmosphere, the smoke was fundamentally transformed. This is what we mean when scientists talk about smoke "aging" or getting "stale" over time. Other recent research has started to show how wildfire smoke can become more toxic as it ages.

What Do All These Changes Mean for Health?

The health damage from smoke is largely a result of how much PM2.5 it contains. These are tiny particles, a fraction of the width of a human hair, that can be breathed deep into the lungs where they can irritate the respiratory tract. Even short-term exposure can aggravate heart and lung problems.

PM2.5 particles are tiny at less than 2.5 microns across. U.S. Environmental Protection Agency

Chemical reactions control how much PM2.5 is in wildfire smoke as it is transported away from the fires and into population centers. Using our aircraft measurements to understand these processes, we chemists can better predict how much PM2.5 will be present in aged smoke.

Combined with meteorology forecasting that predicts where the smoke will go, this could lead to improved air quality models that can tell people downwind whether they will be exposed to unhealthy air.

Better Air Quality Forecasting

With wildfires increasingly in the news, more people have become aware of their own air quality. Resources such as AirNow from the U.S. Environmental Protection Agency provide current and forecasted air quality data, along with explanations of the health hazards. Local information is often available from state or regional agencies as well.

Air quality measurements and forecasts can help people avoid unhealthy situations, especially sensitive groups such as people with asthma. During predicted periods of unhealthy air quality, local or state governments can use forecasts to reduce other pollution sources, such as discouraging residential wood burning or high-emitting industrial activities.

Looking to the future, wildfire smoke is likely to be widespread across the West each year for several reasons. Rising temperatures are leaving the landscape drier and more flammable. At the same time, more people are building homes in the wildland-urban interface, creating more opportunities for fires to start.

A large community of scientists including me are working to better understand wildfire emissions and how they change as they blow into downwind communities. That knowledge will improve forecasts for air quality and health impacts of wildfire smoke, so people can learn to adapt and avoid the worst health consequences.

Brett B. Palm is a Postdoctoral Researcher in Atmospheric Chemistry, University of Washington.

Disclosure statement: Brett Palm receives funding from the National Science Foundation and the National Oceanic and Atmospheric Administration.

Reposted with permission from The Conversation.

Kevin Maillefer / Unsplash

By Lynne Peeples

Editor's note: This story is part of a nine-month investigation of drinking water contamination across the U.S. The series is supported by funding from the Park Foundation and Water Foundation. Read the launch story, "Thirsting for Solutions," here.

In late September 2020, officials in Wrangell, Alaska, warned residents who were elderly, pregnant or had health problems to avoid drinking the city's tap water — unless they could filter it on their own.

Read More Show Less

EcoWatch Daily Newsletter

Eat Just's cell-based chicken nugget is now served at Singapore restaurant 1880. Eat Just, Inc.

At a time of impending global food scarcity, cell-based meats and seafood have been heralded as the future of food.

Read More Show Less


New Zealand sea lions are an endangered species and one of the rarest species of sea lions in the world. Art Wolfe / Photodisc / Getty Images

One city in New Zealand knows what its priorities are.

Dunedin, the second largest city on New Zealand's South Island, has closed a popular road to protect a mother sea lion and her pup, The Guardian reported.

Read More Show Less

piyaset / iStock / Getty Images Plus

In an alarming new study, scientists found that climate change is already harming children's diets.

Read More Show Less
Wildfires within the Arctic Circle in Alaska on June 4, 2020. Contains modified Copernicus Sentinel data processed by Pierre Markuse. CC BY 2.0

By Jeff Masters, Ph.D.

Earth had its second-warmest year on record in 2020, just 0.02 degrees Celsius (0.04°F) behind the record set in 2016, and 0.98 degrees Celsius (1.76°F) above the 20th-century average, NOAA reported January 14.

Read More Show Less