
By Bentham Paulos
Renewable electricity records are being broken every day. In early October, Germany hit a 59 percent renewable peak, Colorado utility Xcel Energy peaked at 60 percent wind at the beginning of the year and Spain got its top power supply from wind for three months leading into 2013.
But that’s chump change compared with Denmark. According to data from Energinet, the national grid operator, wind power has produced 30 percent of gross power consumption to date in 2013. This includes more than 90 hours where wind produced more than all of Denmark’s electricity needs, peaking at 122 percent on Oct. 28, at 2 a.m.
And Denmark has plans to get to 50 percent more wind by 2020, creating even bigger hourly peaks. Energinet predicts the country may hit as many as 1,000 hours per year of power surplus.
To champions of renewables, this is validation that a clean energy future is possible and that the transition is already underway. These regions also give insight into what is to come in the U.S., and what needs to change to keep a reliable and affordable power system as clean energy grows.
Postcards from the future
As part of America’s Power Plan, we have developed a series of “postcards from the future,” describing places like Denmark that are already grappling with a high-renewables future.
Studies and real-world experience are underscoring that there are many tactics available to deal with the variability of wind and solar, and that these tactics are largely substitutes for each other.
While energy storage comes to mind first for many people, the truth is that the grid has functioned just fine with very little storage. Power system operators have to deal with variability all the time, with or without renewables. Demand fluctuates with the weather, time of day, social activities, and industrial operations. And supply varies unexpectedly too, such as when a power plant breaks down. The fluctuations of wind and solar, especially at moderate levels, are just one more variable—one that may or may not add to overall variability, depending on the system and timing.
Power system engineers use a whole suite of tools to match supply and demand, both minute-to-minute and over longer time frames. The most obvious example is a dispatchable power plant, like a gas turbine. But they also benefit from bigger balancing areas (trading power with neighbors), more transmission connections to reduce congestion, faster-acting fossil power plants, direct load control and demand response, targeted energy efficiency, and curtailment of wind and solar plants.
Hydro power and even fossil fuels are the traditional forms of energy storage, but many more are emerging, such as using power to heat district heating systems, compressed air, batteries and flywheels, and charging electric cars during the renewable peak.
It is increasingly common to treat wind power as a controllable generator, rather than just letting it go full out. System operators in New York, Texas and the Midwest direct wind farm owners to submit five-minute forecasts of output, and ramp up and down if necessary to meet system demands, just like conventional generators. The Midwest ISO enforces this with a “dispatchable intermittent tariff.”
Making it work: Easy Solutions First
So how can Denmark be 122 percent wind-powered? Where does the extra power go?
Denmark is part of an integrated regional grid with the Scandinavian countries and parts of Germany. They have a constant trade with utilities in the region, especially hydro plants in Norway.
As renewables grow and as Denmark attempts to phase out fossil fuels altogether by 2050, the country is aggressively adopting smart grid technologies, leading Europe in research and demonstration projects on a per-capita basis. The island of Bornholm will be a test bed, with extensive smart grid and renewable energy deployment. Demand response is beginning to grow, though in a different form than in the U.S. Denmark also has big goals for electric cars, and has exempted them from the 180 percent sales tax applied to gas and diesel vehicles.
But conventional solutions will be the first solution through better grid links between countries. As Germany’s Agora Energiewende has put it in its 12 Insights report, “Grids are cheaper than storage facilities.” More grid connections allow surplus power to be shipped off rather than curtailed or stored. Larger balancing areas reduce the variability of wind and solar across a wider geographic area. Agora thinks storage will only be necessary when renewables constitute 70 percent of total supply.
As in the U.S., European regulators are grappling with policies to integrate large amounts of renewables. While technical issues remain, they are not really new, only of a larger scale. Most of the integration tools are known; they just need to be bigger and more capable to deal with bigger variations.
Less known are the policy issues. How big should control areas be? How much should be invested in transmission lines, and who should pay for them? What is the relative value of energy payments, versus capacity payments or ancillary services? Most of all, how should we pay for the services we need to keep the lights on?
In America’s Power Plan, Mike Hogan of the Regulatory Assistance Project calls for aligning power markets with clean energy goals, giving proper incentives for market flexibility.
With 2020 just around the corner, it will be instructive to see how Denmark deals with getting half its electricity from the wind. What will the country do with a 200 percent wind day?
Bentham Paulos is the project manager for America’s Power Plan.
Author's note: A number of system operators have put their real-time data online and in iPhone apps, so you can track hourly progress on renewables.
Energinet (Denmark): Real time map and historical data
National Grid’s NETA (England): Data sources
California ISO: Daily demand graph and iPhone app
ISO New England: Guest dashboard
Midwest ISO: Contour pricing map
Visit EcoWatch’s RENEWABLES page for more related news on this topic.
Butterflies across the U.S. West are disappearing, and now researchers say the climate crisis is largely to blame.
- New Clues Help Monarch Butterfly Conservation Efforts - EcoWatch ›
- Monarch Butterflies Will Be Protected Under Historic Deal - EcoWatch ›
EcoWatch Daily Newsletter
California faces another "critically dry year" according to state officials, and a destructive wildfire season looms on its horizon. But in a state that welcomes innovation, water efficacy approaches and drought management could replenish California, increasingly threatened by the climate's new extremes.
- Remarkable Drop in Colorado River Water Use Sign of Climate ... ›
- California Faces a Future of Extreme Weather - EcoWatch ›
Trending
Wisdom the mōlī, or Laysan albatross, is the oldest wild bird known to science at the age of at least 70. She is also, as of February 1, a new mother.
<div id="dadb2" class="rm-shortcode" data-rm-shortcode-id="aa2ad8cb566c9b4b6d2df2693669f6f9"><blockquote class="twitter-tweet twitter-custom-tweet" data-twitter-tweet-id="1357796504740761602" data-partner="rebelmouse"><div style="margin:1em 0">🚨Cute baby alert! Wisdom's chick has hatched!!! 🐣😍 Wisdom, a mōlī (Laysan albatross) and world’s oldest known, ban… https://t.co/Nco050ztBA</div> — USFWS Pacific Region (@USFWS Pacific Region)<a href="https://twitter.com/USFWSPacific/statuses/1357796504740761602">1612558888.0</a></blockquote></div>
The Science Behind Frozen Wind Turbines – and How to Keep Them Spinning Through the Winter
By Hui Hu
Winter is supposed to be the best season for wind power – the winds are stronger, and since air density increases as the temperature drops, more force is pushing on the blades. But winter also comes with a problem: freezing weather.
Comparing rime ice and glaze ice shows how each changes the texture of the blade. Gao, Liu and Hu, 2021, CC BY-ND
Ice buildup changes air flow around the turbine blade, which can slow it down. The top photos show ice forming after 10 minutes at different temperatures in the Wind Research Tunnel. The lower measurements show airflow separation as ice accumulates. Icing Research Tunnel of Iowa State University, CC BY-ND
How ice builds up on the tips of turbine blades. Gao, Liu and Hu, 2021, CC BY-ND
While traditional investment in the ocean technology sector has been tentative, growth in Israeli maritime innovations has been exponential in the last few years, and environmental concern has come to the forefront.
theDOCK aims to innovate the Israeli maritime sector. Pexels
<p>The UN hopes that new investments in ocean science and technology will help turn the tide for the oceans. As such, this year kicked off the <a href="https://www.oceandecade.org/" target="_blank" rel="noopener noreferrer">United Nations Decade of Ocean Science for Sustainable Development (2021-2030)</a> to galvanize massive support for the blue economy.</p><p>According to the World Bank, the blue economy is the "sustainable use of ocean resources for economic growth, improved livelihoods, and jobs while preserving the health of ocean ecosystem," <a href="https://www.sciencedirect.com/science/article/pii/S0160412019338255#b0245" target="_blank" rel="noopener noreferrer">Science Direct</a> reported. It represents this new sector for investments and innovations that work in tandem with the oceans rather than in exploitation of them.</p><p>As recently as Aug. 2020, <a href="https://www.reutersevents.com/sustainability/esg-investors-slow-make-waves-25tn-ocean-economy" target="_blank" rel="noopener noreferrer">Reuters</a> noted that ESG Investors, those looking to invest in opportunities that have a positive impact in environmental, social and governance (ESG) issues, have been interested in "blue finance" but slow to invest.</p><p>"It is a hugely under-invested economic opportunity that is crucial to the way we have to address living on one planet," Simon Dent, director of blue investments at Mirova Natural Capital, told Reuters.</p><p>Even with slow investment, the blue economy is still expected to expand at twice the rate of the mainstream economy by 2030, Reuters reported. It already contributes $2.5tn a year in economic output, the report noted.</p><p>Current, upward <a href="https://www.ecowatch.com/-innovation-blue-economy-2646147405.html" target="_self">shifts in blue economy investments are being driven by innovation</a>, a trend the UN hopes will continue globally for the benefit of all oceans and people.</p><p>In Israel, this push has successfully translated into investment in and innovation of global ports, shipping, logistics and offshore sectors. The "Startup Nation," as Israel is often called, has seen its maritime tech ecosystem grow "significantly" in recent years and expects that growth to "accelerate dramatically," <a href="https://itrade.gov.il/belgium-english/how-israel-is-becoming-a-port-of-call-for-maritime-innovation/" target="_blank" rel="noopener noreferrer">iTrade</a> reported.</p><p>Driving this wave of momentum has been rising Israeli venture capital hub <a href="https://www.thedockinnovation.com/" target="_blank" rel="noopener noreferrer">theDOCK</a>. Founded by Israeli Navy veterans in 2017, theDOCK works with early-stage companies in the maritime space to bring their solutions to market. The hub's pioneering efforts ignited Israel's maritime technology sector, and now, with their new fund, theDOCK is motivating these high-tech solutions to also address ESG criteria.</p><p>"While ESG has always been on theDOCK's agenda, this theme has become even more of a priority," Nir Gartzman, theDOCK's managing partner, told EcoWatch. "80 percent of the startups in our portfolio (for theDOCK's Navigator II fund) will have a primary or secondary contribution to environmental, social and governance (ESG) criteria."</p><p>In a company presentation, theDOCK called contribution to the ESG agenda a "hot discussion topic" for traditional players in the space and their boards, many of whom are looking to adopt new technologies with a positive impact on the planet. The focus is on reducing carbon emissions and protecting the environment, the presentation outlines. As such, theDOCK also explicitly screens candidate investments by ESG criteria as well.</p><p>Within the maritime space, environmental innovations could include measures like increased fuel and energy efficiency, better monitoring of potential pollution sources, improved waste and air emissions management and processing of marine debris/trash into reusable materials, theDOCK's presentation noted.</p>theDOCK team includes (left to right) Michal Hendel-Sufa, Head of Alliances, Noa Schuman, CMO, Nir Gartzman, Co-Founder & Managing Partner, and Hannan Carmeli, Co-Founder & Managing Partner. Dudu Koren
<p>theDOCK's own portfolio includes companies like Orca AI, which uses an intelligent collision avoidance system to reduce the probability of oil or fuel spills, AiDock, which eliminates the use of paper by automating the customs clearance process, and DockTech, which uses depth "crowdsourcing" data to map riverbeds in real-time and optimize cargo loading, thereby reducing trips and fuel usage while also avoiding groundings.</p><p>"Oceans are a big opportunity primarily because they are just that – big!" theDOCK's Chief Marketing Officer Noa Schuman summarized. "As such, the magnitude of their criticality to the global ecosystem, the magnitude of pollution risk and the steps needed to overcome those challenges – are all huge."</p><p>There is hope that this wave of interest and investment in environmentally-positive maritime technologies will accelerate the blue economy and ESG investing even further, in Israel and beyond.</p>- 14 Countries Commit to Ocean Sustainability Initiative - EcoWatch ›
- These 11 Innovations Are Protecting Ocean Life - EcoWatch ›
- How Innovation Is Driving the Blue Economy - EcoWatch ›