
We now need to eat two portions of farmed salmon to equal the amount of omega-3 intake that we would have gotten just five years ago, says a study from Stirling University in Scotland. The change appears to be due to a reduction in the amount of ground-up anchovies added to their feed.
Farm-raised and wild caught salmon contain the same amount of cholesterol, but wild salmon have half the fat of farmed in a typical half-filet serving.
Salmon farming is only about four decades old, but it is the fastest-growing food production system in the world according to WWF. Globally, about 3.5 million tons are caught or raised each year, and salmon accounts for 17 percent of the global seafood trade. About 70 percent of the world's salmon production is farmed.
Salmon is among the most popular seafoods in the U.S., where we eat 2.3 pounds per person each year. We prize salmon for its omega-3 fatty acids. National Oceanic and Atmospheric Administration (NOAA) says that consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are key omega-3s found in seafood, may help to prevent high blood pressure, heart disease, certain types of cancer, clinical depression, anxiety and macular degeneration. Of the salmon consumed in the U.S., half is farm-raised.
Wild catch vs. farm-raised seafoodMarine Harvest
NOAA also states that farmed seafood is safe and healthy to eat, but many have questions about the practice. Crowded conditions in the pens used for raising salmon provide an ideal breeding ground for sea lice, which are now invading wild Alaskan salmon populations. Sea lice can be lethal to juvenile pink and chum salmon. In farms in some parts of the world, a pesticide is used to combat sea lice that is toxic to marine life and banned by both the European Union and U.S. Food and Drug Administration.
.@SeaShepherd, Pamela Anderson Team Up to Investigate #Salmon Farming Industry https://t.co/eCNH8XJ2JV @pamfoundation @Food_Tank @EWG— EcoWatch (@EcoWatch)1468852273.0
The greatest concern, though, centers around interbreeding of farmed and wild salmon. In September, a study by Canada's Department of Fisheries and Oceans found that more than 750,000 salmon have escaped from fish farms in Newfoundland since aquaculture began, and that these fish are breeding with wild salmon and producing offspring. A separate study in Norway found that half the wild salmon tested had genetic material from farmed fish. It's unclear which traits might impose themselves on wild salmon, but farm-raised fish are bred to grow big and to grow fast.
Farm-raised and wild caught salmon contain the same amount of cholesterol, but wild salmon have half the fat of farmed in a typical half-filet serving. Farmed fish also deliver three times the saturated fat as wild. But to feed a growing global population and provide the omega-3s they need, wild fisheries may not be up to the job.
On the West Coast of North America, salmon are in trouble. The number of endangered or threatened salmon runs on the Columbia River system has jumped from four to 13. In British Columbia, the sockeye salmon run this year was the lowest ever seen. Alaska's pink salmon catch is the worst it has been in 40 years.
Farmed salmon can still be ecologically friendly. According to WWF, it takes 10 to 12 pounds of feed to produce one pound of beef, but less than two pounds to yield a pound of salmon. Recognizing the need for fish farming, WWF worked to create global standards for salmon aquaculture designed to address the worst impacts. The Aquaculture Stewardship Council (ASC) now manages the standards and provides a certification program that retailers and consumers can use to ensure they are buying responsibly-farmed salmon.
The standards require farms to minimize diseases and the occurrence of sea lice while limiting the use of medicines to a set of strict conditions. Farms are also required to monitor and control water quality and prevent fish escapes as much as possible. The ASC also limits use of wild fish as feed, which is now seen to be responsible for reducing omega-3 levels in farmed salmon.
"We, and many others, are working very hard at developing new sustainable alternatives to fish oil and fish meal as sources of these long-chain omega-3s," wrote Dr. Douglas Tocher, one of the authors of the study, in an email to EcoWatch. "These include microalgal sources and genetically-modified oilseed crops."
The U.S. imports 91 percent of the seafood it consumes. Currently, oysters, clams and mussels account for tho-thirds of farmed seafood produced in the U.S., but NOAA opened up the hurricane-prone Gulf of Mexico to fish farms in January. That's the first time federal waters have been available for fish farming. So far, no commercial proposals have been received.
The World Bank estimates that almost two-thirds of the fish we eat in 2030 will be farm-raised. "Aquaculture will be an essential part of the solution to global food security," said Jim Anderson, bank advisor on fisheries, aquaculture and oceans for the World Bank Group. "We expect the aquaculture industry to improve its practices in line with expectations from the market for sustainable and responsibly produced seafood."
Aquaculture may also be the only answer to overfishing of the seas. Almost one third of global fish stocks are overfished, according to the United Nations. WWF says that stocks of all current food species of fish could collapse by 2048. But we'll need to feed 9 billion people by then.
"The solutions are very much in the pipeline," wrote Dr. Tocher. "Farmed salmon still deliver more omega-3 than wild salmon. And there is also absolutely no harm In eating two portions of farmed salmon."
In 2010, world leaders agreed to 20 targets to protect Earth's biodiversity over the next decade. By 2020, none of them had been met. Now, the question is whether the world can do any better once new targets are set during the meeting of the UN Convention on Biodiversity in Kunming, China later this year.
- Ocean Scientists Create Global Network to Help Save Biodiversity ... ›
- 5 Reasons Why Biodiversity Matters - EcoWatch ›
- 26 Organizations Working to Conserve Seed Biodiversity - EcoWatch ›
- The Top 10 Ocean Biodiversity Hotspots to Protect - EcoWatch ›
- New Platform Shows How to Protect Biodiversity and Save Planet ... ›
- These Scientists Are Listening to the Borneo Rainforest to Protect ... ›
EcoWatch Daily Newsletter
By Andrew Rosenberg
The first 24 hours of the administration of President Joe Biden were filled not only with ceremony, but also with real action. Executive orders and other directives were quickly signed. More actions have followed. All consequential. Many provide a basis for not just undoing actions of the previous administration, but also making real advances in public policy to protect public health, safety, and the environment.
- Here Are Biden's Day One Actions on Climate and Environment ... ›
- UCS Offers Science Advice for Biden Administration - EcoWatch ›
Trending
A first-of-its-kind study has examined the satellite record to see how the climate crisis is impacting all of the planet's ice.
- 'Ghost Forests' Are an Eerie Sign of Sea-Level Rise - EcoWatch ›
- Sea-Level Rise Takes Business Toll in North Carolina's Outer Banks ... ›
- Sea Level Rise Is Locked in Even If We Meet Paris Agreement ... ›
A Healthy Microbiome Builds a Strong Immune System That Could Help Defeat COVID-19
By Ana Maldonado-Contreras
Takeaways
- Your gut is home to trillions of bacteria that are vital for keeping you healthy.
- Some of these microbes help to regulate the immune system.
- New research, which has not yet been peer-reviewed, shows the presence of certain bacteria in the gut may reveal which people are more vulnerable to a more severe case of COVID-19.
You may not know it, but you have an army of microbes living inside of you that are essential for fighting off threats, including the virus that causes COVID-19.
How Do Resident Bacteria Keep You Healthy?
<p>Our immune defense is part of a complex biological response against harmful pathogens, such as viruses or bacteria. However, because our bodies are inhabited by trillions of mostly beneficial bacteria, virus and fungi, activation of our immune response is tightly regulated to distinguish between harmful and helpful microbes.</p><p>Our bacteria are spectacular companions diligently helping prime our immune system defenses to combat infections. A seminal study found that mice treated with antibiotics that eliminate bacteria in the gut exhibited an impaired immune response. These animals had low counts of virus-fighting white blood cells, weak antibody responses and poor production of a protein that is vital for <a href="https://doi.org/10.1073/pnas.1019378108" target="_blank">combating viral infection and modulating the immune response</a>.</p><p><a href="https://doi.org/10.1371/journal.pone.0184976" target="_blank" rel="noopener noreferrer">In another study</a>, mice were fed <em>Lactobacillus</em> bacteria, commonly used as probiotic in fermented food. These microbes reduced the severity of influenza infection. The <em>Lactobacillus</em>-treated mice did not lose weight and had only mild lung damage compared with untreated mice. Similarly, others have found that treatment of mice with <em>Lactobacillus</em> protects against different <a href="https://doi.org/10.1038/srep04638" target="_blank" rel="noopener noreferrer">subtypes of</a> <a href="https://doi.org/10.1038/s41598-017-17487-8" target="_blank" rel="noopener noreferrer">influenza</a> <a href="https://doi.org/10.1371/journal.ppat.1008072" target="_blank" rel="noopener noreferrer">virus</a> and human respiratory syncytial virus – the <a href="https://doi.org/10.1038/s41598-019-39602-7" target="_blank" rel="noopener noreferrer">major cause of viral bronchiolitis and pneumonia in children</a>.</p>Chronic Disease and Microbes
<p>Patients with chronic illnesses including Type 2 diabetes, obesity and cardiovascular disease exhibit a hyperactive immune system that fails to recognize a harmless stimulus and is linked to an altered gut microbiome.</p><p>In these chronic diseases, the gut microbiome lacks bacteria that activate <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">immune cells</a> that block the response against harmless bacteria in our guts. Such alteration of the gut microbiome is also observed in <a href="https://doi.org/10.1073/pnas.1002601107" target="_blank" rel="noopener noreferrer">babies delivered by cesarean section</a>, individuals consuming a poor <a href="https://doi.org/10.1038/nature12820" target="_blank" rel="noopener noreferrer">diet</a> and the <a href="https://doi.org/10.1038/nature11053" target="_blank" rel="noopener noreferrer">elderly</a>.</p><p>In the U.S., 117 million individuals – about half the adult population – <a href="https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/" target="_blank" rel="noopener noreferrer">suffer from Type 2 diabetes, obesity, cardiovascular disease or a combination of them</a>. That suggests that half of American adults carry a faulty microbiome army.</p><p>Research in my laboratory focuses on identifying gut bacteria that are critical for creating a balanced immune system, which fights life-threatening bacterial and viral infections, while tolerating the beneficial bacteria in and on us.</p><p>Given that diet affects the diversity of bacteria in the gut, <a href="https://www.umassmed.edu/nutrition/melody-trial-info/" target="_blank" rel="noopener noreferrer">my lab studies show how diet can be used</a> as a therapy for chronic diseases. Using different foods, people can shift their gut microbiome to one that boosts a healthy immune response.</p><p>A fraction of patients infected with SARS-CoV-2, the virus that causes COVID-19 disease, develop severe complications that require hospitalization in intensive care units. What do many of those patients have in common? <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm" target="_blank" rel="noopener noreferrer">Old age</a> and chronic diet-related diseases like obesity, Type 2 diabetes and cardiovascular disease.</p><p><a href="http://doi.org/10.1016/j.jada.2008.12.019" target="_blank" rel="noopener noreferrer">Black and Latinx people are disproportionately affected by obesity, Type 2 diabetes and cardiovascular disease</a>, all of which are linked to poor nutrition. Thus, it is not a coincidence that <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6933e1.htm" target="_blank" rel="noopener noreferrer">these groups have suffered more deaths from COVID-19</a> compared with whites. This is the case not only in the U.S. but also <a href="https://www.washingtonpost.com/world/europe/blacks-in-britain-are-four-times-as-likely-to-die-of-coronavirus-as-whites-data-show/2020/05/07/2dc76710-9067-11ea-9322-a29e75effc93_story.html" target="_blank" rel="noopener noreferrer">in Britain</a>.</p>Discovering Microbes That Predict COVID-19 Severity
<p>The COVID-19 pandemic has inspired me to shift my research and explore the role of the gut microbiome in the overly aggressive immune response against SARS-CoV-2 infection.</p><p>My colleagues and I have hypothesized that critically ill SARS-CoV-2 patients with conditions like obesity, Type 2 diabetes and cardiovascular disease exhibit an altered gut microbiome that aggravates <a href="https://theconversation.com/exercise-may-help-reduce-risk-of-deadly-covid-19-complication-ards-136922" target="_blank" rel="noopener noreferrer">acute respiratory distress syndrome</a>.</p><p>Acute respiratory distress syndrome, a life-threatening lung injury, in SARS-CoV-2 patients is thought to develop from a <a href="http://doi.org/10.1016/j.cytogfr.2020.05.003" target="_blank" rel="noopener noreferrer">fatal overreaction of the immune response</a> called a <a href="https://theconversation.com/blocking-the-deadly-cytokine-storm-is-a-vital-weapon-for-treating-covid-19-137690" target="_blank" rel="noopener noreferrer">cytokine storm</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">that causes an uncontrolled flood</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">of immune cells into the lungs</a>. In these patients, their own uncontrolled inflammatory immune response, rather than the virus itself, causes the <a href="http://doi.org/10.1007/s00134-020-05991-x" target="_blank" rel="noopener noreferrer">severe lung injury and multiorgan failures</a> that lead to death.</p><p>Several studies <a href="https://doi.org/10.1016/j.trsl.2020.08.004" target="_blank" rel="noopener noreferrer">described in one recent review</a> have identified an altered gut microbiome in patients with COVID-19. However, identification of specific bacteria within the microbiome that could predict COVID-19 severity is lacking.</p><p>To address this question, my colleagues and I recruited COVID-19 hospitalized patients with severe and moderate symptoms. We collected stool and saliva samples to determine whether bacteria within the gut and oral microbiome could predict COVID-19 severity. The identification of microbiome markers that can predict the clinical outcomes of COVID-19 disease is key to help prioritize patients needing urgent treatment.</p><p><a href="https://doi.org/10.1101/2021.01.05.20249061" target="_blank" rel="noopener noreferrer">We demonstrated</a>, in a paper which has not yet been peer reviewed, that the composition of the gut microbiome is the strongest predictor of COVID-19 severity compared to patient's clinical characteristics commonly used to do so. Specifically, we identified that the presence of a bacterium in the stool – called <em>Enterococcus faecalis</em>– was a robust predictor of COVID-19 severity. Not surprisingly, <em>Enterococcus faecalis</em> has been associated with <a href="https://doi.org/10.1053/j.gastro.2011.05.035" target="_blank" rel="noopener noreferrer">chronic</a> <a href="https://doi.org/10.1016/S0002-9440(10)61172-8" target="_blank" rel="noopener noreferrer">inflammation</a>.</p><p><em>Enterococcus faecalis</em> collected from feces can be grown outside of the body in clinical laboratories. Thus, an <em>E. faecalis</em> test might be a cost-effective, rapid and relatively easy way to identify patients who are likely to require more supportive care and therapeutic interventions to improve their chances of survival.</p><p>But it is not yet clear from our research what is the contribution of the altered microbiome in the immune response to SARS-CoV-2 infection. A recent study has shown that <a href="https://doi.org/10.1101/2020.12.11.416180" target="_blank" rel="noopener noreferrer">SARS-CoV-2 infection triggers an imbalance in immune cells</a> called <a href="https://doi.org/10.1111/imr.12170" target="_blank" rel="noopener noreferrer">T regulatory cells that are critical to immune balance</a>.</p><p>Bacteria from the gut microbiome are responsible for the <a href="https://doi.org/10.7554/eLife.30916.001" target="_blank" rel="noopener noreferrer">proper activation</a> <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">of those T-regulatory</a> <a href="https://doi.org/10.1038/nri.2016.36" target="_blank" rel="noopener noreferrer">cells</a>. Thus, researchers like me need to take repeated patient stool, saliva and blood samples over a longer time frame to learn how the altered microbiome observed in COVID-19 patients can modulate COVID-19 disease severity, perhaps by altering the development of the T-regulatory cells.</p><p>As a Latina scientist investigating interactions between diet, microbiome and immunity, I must stress the importance of better policies to improve access to healthy foods, which lead to a healthier microbiome. It is also important to design culturally sensitive dietary interventions for Black and Latinx communities. While a good-quality diet might not prevent SARS-CoV-2 infection, it can treat the underlying conditions related to its severity.</p><p><em><a href="https://theconversation.com/profiles/ana-maldonado-contreras-1152969" target="_blank">Ana Maldonado-Contreras</a> is an assistant professor of Microbiology and Physiological Systems at the University of Massachusetts Medical School.</em></p><p><em>Disclosure statement: Ana Maldonado-Contreras receives funding from The Helmsley Charitable Trust and her work has been supported by the American Gastroenterological Association. She received The Charles A. King Trust Postdoctoral Research Fellowship. She is also member of the Diversity Committee of the American Gastroenterological Association.</em></p><p><em style="">Reposted with permission from <a href="https://theconversation.com/a-healthy-microbiome-builds-a-strong-immune-system-that-could-help-defeat-covid-19-145668" target="_blank" rel="noopener noreferrer" style="">The Conversation</a>. </em></p>By Jeff Masters, Ph.D.
The New Climate War: the fight to take back our planet is the latest must-read book by leading climate change scientist and communicator Michael Mann of Penn State University.
- 12 New Books Explore Fresh Approaches to Act on Climate Change ... ›
- Dr. Michael Mann on Climate Denial: 'It's Impaired Our Ability to ... ›