Quantcast
Fracking
A water impoundment at a drill pad in the Fayetteville Shale gas play of Arkansas. Bill Cunningham / USGS

Injecting Wastewater Underground Can Cause Earthquakes Up to 10 Kilometers Away

By Emily Brodsky

Earthquakes in the central and eastern U.S. have increased dramatically in the last decade as a result of human activities. Enhanced oil recovery techniques, including dewatering and hydraulic fracturing, or fracking, have made accessible large quantities of oil and gas previously trapped underground, but often result in a glut of contaminated wastewater as a byproduct.


Energy companies frequently inject wastewater deep underground to avoid polluting drinking water sources. This process is responsible for a surge of earthquakes in Oklahoma and other regions.

The timing of these earthquakes makes it clear that they are linked with deep wastewater injection. But earthquake scientists like me want to anticipate how far from injection sites these quakes may occur.

In collaboration with a researcher in my group, Thomas Goebel, I examined injection wells around the world to determine how the number of earthquakes changed with the distance from injection. We found that in some cases wells could trigger earthquakes up to 10 kilometers (6 miles) away. We also found that, contradictory to conventional wisdom, injecting fluids into sedimentary rock rather than the harder underlying rock often generates larger and more distant earthquakes.

Cumulative number of earthquakes with a magnitude of 3.0 or larger in the central and eastern United States, 1973-2015.USGS

Transmitting Pressure Through Rock

Assessing how far from a well earthquakes might occur has practical consequences for regulation and management. At first glance, one might expect that the most likely place for wastewater disposal to trigger an earthquake is at the site of the injection well, but this is not necessarily true.

Since the 1970s, scientists and engineers have understood that injecting water directly into faults can jack the faults open, making it easier for them to slide in an earthquake. More recently it has become clear that water injection can also cause earthquakes in other ways.

For example, water injected underground can create pressure that deforms the surrounding rock and pushes faults toward slipping in earthquakes. This effect is called poroelasticity. Because water does not need to be injected directly into the fault to generate earthquakes via poroelasticity, it can trigger them far away from the injection well.

Deep disposal wells are typically less than a foot in diameter, so the chance of any individual well intersecting a fault that is ready to have an earthquake is quite small. But at greater distances from the well, the number of faults that are affected rises, increasing the chance of encountering a fault that can be triggered.

Of course, the pressure that a well exerts also decreases with distance. There is a trade-off between decreasing effects from the well and increasing chances of triggering a fault. As a result, it is not obvious how far earthquakes may occur from injection wells.


Where to Inject?

To assess this question, we examined sites around around the world that were well-isolated from other injection sites, so that earthquakes could clearly be associated with a specific well and project. We focused on around 20 sites that had publicly accessible, high-quality data, including accurate earthquake locations.

We found that these sites fell into two categories, depending on the injection strategy used. For context, oil and gas deposits form in basins. As layers of sediments gradually accumulate, any organic materials trapped in these layers are compressed, heated and eventually converted into fossil fuels. Energy companies may inject wastewater either into the sedimentary rocks that fill oil and gas basins, or into older, harder underlying basement rock.

At sites we examined, injecting water into sedimentary rocks generated a gradually decaying cloud of seismicity out to great distances. In contrast, injecting water into basement rock generated a compact swarm of earthquakes within a kilometer of the disposal site. The larger earthquakes produced in these cases were smaller than those produced in sedimentary rock.

This was a huge surprise. The conventional wisdom is that injecting fluids into basement rock is more dangerous than injecting into sedimentary rock because the largest faults, which potentially can make the most damaging earthquakes, are in the basement. Mitigation strategies around the world are premised on this idea, but our data showed the opposite.

How wastewater injection can make earthquakes: In basement rocks (left), injection activates faults in the small region directly connected to the added water, shown in blue. In sedimentary injection (right), an additional halo of squeezed rock, shown in red, surrounds the pressurized fluid and can activate more distant faults. Thomas Goebel, CC BY-ND

Why would injecting fluids into sedimentary rock cause larger quakes? We believe a key factor is that at sedimentary injection sites, rocks are softer and easier to pressurize through water injection. Because this effect can extend a great distance from the wells, the chances of hitting a large fault are greater. Poroelasticity appears to be generating earthquakes in the basement even when water is injected into overlying sedimentary rocks.

In fact, most of the earthquakes that we studied occurred in the basement, even at sedimentary injection sites. Both sedimentary and basement injection activate the deep, more dangerous faults – and sedimentary sequences activate more of them.

Although it is theoretically possible that water could be transported to the basement through fractures, this would have to happen very fast to explain the rapid observed rise in earthquake rates at the observed distances from injection wells. Poroelasticity appears to be a more likely process.

Avoiding Human-Induced Quakes

Our findings suggest that injection into sedimentary rocks is more dangerous than injecting water into basement rock, but this conclusion needs to be taken with a rather large grain of salt. If a well is placed at random on Earth's surface, the fact that sedimentary injection can affect large areas will increase the likelihood of a big earthquake.

However, wells are seldom placed at random. In order to efficiently dispose of wastewater, wells must be in permeable rock where the water can flow away from the well. Basement rocks are generally low permeability and therefore are not very efficient areas in which to dispose of wastewater.

One of the few ways that basement rocks can have high permeability is when there are faults that fracture the rock. But, of course, if these high permeability faults are used for injection, the chances of having an earthquake skyrocket. Ideally, injection into basement rock should be planned to avoid known larger faults.

If a well does inject directly into a basement fault, an anomalously large earthquake can occur. The magnitude 5.4 Pohang earthquake in South Korea in 2017 occurred near a geothermal energy site where hydraulic injection had recently been carried out.

The important insight of this study is that injection into sedimentary rocks activates more of these basement rocks than even direct injection. Sedimentary rock injection is not a safer alternative to basement injection.

Reposted with permission from our media associate The Conversation.

Show Comments ()

EcoWatch Daily Newsletter

Sponsored
Renewable Energy
A prototype of GE's massive new wind turbine will be installed in the industrial area of Maasvlakte 2 in Rotterdam. GE Renewable Energy

World's Largest Wind Turbine to Test Its Wings in Rotterdam

Rotterdam's skyline will soon feature the world's largest and most powerful offshore wind turbine.

GE Renewable Energy announced on Wednesday it will install the first 12-megawatt Haliade-X prototype in the Dutch city this summer. Although it's an offshore wind turbine by design, the prototype will be installed onshore to facilitate access for testing.

Keep reading... Show less
Insights/Opinion
Colorful, fresh organic vegetables. fcafotodigital / Getty Images

A New Diet for the Planet

By Tim Radford

An international panel of health scientists and climate researchers has prescribed a new diet for the planet: more vegetables, less meat, fresh fruit, whole grains and pulses, give up sugar, waste less and keep counting the calories.

And if 200 nations accept the diagnosis and follow doctor's orders, tomorrow's farmers may be able to feed 10 billion people comfortably by 2050, help contain climate change, and prevent 11 million premature deaths per year.

Keep reading... Show less
Popular
Children's books about the environment. U.S. Air Force photo / Karen Abeyasekere

This State Might Require Public Schools to Teach Climate Change

Reading, writing, arithmetic ... and climate science. That doesn't have the same ring as the "three Rs" of education, but Connecticut could one day require the subject to be on the curriculum, The Associated Press reported.

A Connecticut state lawmaker is pushing a bill to mandate the teaching of climate change in public schools throughout the state, starting in elementary school.

Keep reading... Show less
Climate
NASA's ICESCAPE mission investigates the changing conditions in the Arctic. NASA / Kathryn Hansen

These Eye-Opening Memes Show the Real 10-Year Challenge

Before-and-after photos of your friends have probably taken over your Facebook and Instagram feeds, but environmentalists are using the #10YearChallenge to insert a dose of truth.

Memes of shrinking glaciers, emaciated polar bears and coral bleaching certainly subvert the feel-good viral sensation, but these jarring images really show our planet in a worrying state of flux.

Keep reading... Show less
Sponsored
Popular
Vial containing swab from a deceased duck, collected for testing during the 2014-2015 avian influenza outbreak. © 2015 Erica Cirino, used with permission.

Could Trump’s Government Shutdown Cause Outbreaks of Wildlife Disease?

By Erica Cirino

The current U.S. government shutdown could worsen ongoing wildlife disease outbreaks or even delay responses to new epidemics, according to federal insiders and outside experts who work with federal wildlife employees.

Keep reading... Show less
Health
Vegan raw cheese from cashew nuts. byheaven/ iStock / Getty Images

Vegan Cheese: What’s the Best Dairy-Free Option?

By Ansley Hill, RD, LD

Cheese is one of the most beloved dairy products across the globe. In the U.S. alone, each person consumes more than 38 pounds (17 kg) of cheese per year, on average (1).

Keep reading... Show less
Sponsored
Insights/Opinion
Sun setting behind the Fawley Oil Refinery in Fawley, England. Clive G' / CC BY-ND 2.0

Even Davos Elite Warns Humanity Is 'Sleepwalking Into Catastrophe'

By Jessica Corbett

Ahead of the World Economic Forum's (WEF) annual meeting in Davos, Switzerland next week—which convenes the world's wealthiest and most powerful for a summit that's been called both the "money Oscars" and a "threat to democracy"—the group published a report declaring, "Of all risks, it is in relation to the environment that the world is most clearly sleepwalking into catastrophe."

Keep reading... Show less
Energy
Robusta coffee beans growing on a tree. Dag Sundberg / Getty Images

60% of Wild Coffee Species at Risk for Extinction

If humans don't wake up now to the threats posed by climate change and habitat loss, we may be in for a permanently sleepy future. A study led by scientists from the Royal Botanic Gardens, Kew found that 60 percent of wild coffee species are at risk for extinction.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!