Museums Preserve Clues That Can Help Scientists Predict and Analyze Future Pandemics

By Pamela Soltis, Joseph Cook and Richard Yanagihara
In less than 20 years, communities around the globe have been hit by a string of major disease outbreaks: SARS, MERS, Ebola, Zika and now, COVID-19. Nearly all emerging infectious diseases in humans originate from microorganisms that are harbored by wildlife and subsequently "jump," either directly or indirectly – for example, through mosquitoes or ticks – to humans.
One factor driving the increase in zoonotic disease outbreaks is that human activities – including population growth, migration and consumption of wild animals – are leading to increased encounters with wildlife. At the same time, genetic mutations in viruses and other microbes are creating new opportunities for disease emergence.
But humans remain largely ignorant of our planet's biodiversity and its natural ecosystems. Only two million species – about 20% of all the estimated species on Earth – have even been named In our view, this fundamental ignorance of nearly all aspects of biodiversity has resulted in an inefficient, poorly coordinated and minimally science-based response to key aspects of the COVID-19 pandemic.
We have diverse backgrounds in plant and mammal evolution and emerging infectious diseases. In a newly published commentary that we wrote with colleagues from across the U.S. and in six other countries, we identify a largely untapped resource for predicting future pandemics: natural history collections in museums around the world.
These collections preserve specimens of animals, plants and other organisms that illustrate the diversity of life on Earth. They are reservoirs of information and samples that can help scientists identify likely pathogen sources, hosts and transmission pathways. We believe that leveraging collections in this way will require more resources and more collaboration between biodiversity scientists and disease outbreak sleuths.
Archives of Life on Earth
Research shows that zoonotic diseases have increased due to human intrusion into animal habitats. In particular, destruction of tropical rain forests throughout the world has brought us face to face with microbes that occur naturally in wild animals and can cause disease in our own species.
Earth's biodiversity is connected through a family tree. Viruses, bacteria and other microbes have evolved with their hosts for millions of years. As a result, a virus that resides in a wild animal host such as a bat without causing disease can be highly pathogenic when transmitted to humans. This is the case with zoonotic diseases.
Unfortunately, national responses to disease outbreaks are often based on very limited knowledge of the basic biology, or even the identity, of the pathogen and its wild host. As scientists, we believe that harnessing centuries of biological knowledge and resources from natural history collections can provide an informed road map to identify the origin and transmission of disease outbreaks.
These collections of animals, plants and fungi date back centuries and are the richest sources of information available about life on Earth. They are housed in museums ranging from the Smithsonian Institution to small colleges.
Together, the world's natural history collections are estimated to contain more than three billion specimens, including preserved specimens of possible hosts of the coronaviruses that have led to SARS, MERS and COVID-19. They provide a powerful distribution map of our planet's biodiversity over space and through time.
View this post on InstagramA post shared by Field Museum (@fieldmuseum) on
Preserved Pathogens
How can researchers channel these collections toward disease discovery? Each specimen – say, a species of pitcher plant from Florida or a deer mouse from arid New Mexico – is catalogued with a scientific name, a collection date and the place where it was collected, and often with other relevant information. These records underpin scientists' understanding of where host species and their associated pathogens are found and when they occurred there.
Connecting the site of a disease outbreak to potential pathogen hosts that occur in that area can help to pinpoint likely hosts, sources of pathogens, and pathways of transmission from hosts to humans and from one human to another. These natural history collections are connected worldwide through massive online databases, so a researcher anywhere in the world can find information on potential hosts in far-off regions.
But that's just the beginning. A preserved specimen of a rodent, a bat or any other potential host animal in a collection also carries preserved pathogens, such as coronaviruses. This means that researchers can quickly survey microbes using specimens that were collected decades or more before for an entirely different purpose. They can use this information to quickly identify a pathogen, associate it with particular wild hosts, and then reconstruct the past distributions and evolution of disease-causing microbes and hosts across geographic space.
Many collections contain frozen samples of animal specimens stored in special low-temperature freezers. These materials can be quickly surveyed for microbes and possible human pathogens using genetic analysis. Scientists can compare DNA sequences of the pathogens found in animal specimens with the disease-causing agent to identify and track pathways of transmission.
Nitrogen freezers for cryo-preserving specimens in the Smithsonian National Museum of Natural History's Biorepository. Donald E. Hurlbert/Smithsonian, CC BY-ND
For example, museum specimens of deer mice at the University of New Mexico were key to the rapid identification of a newly discovered species of hantavirus that caused 13 deaths in the southwest United States in 1993. Subsequent studies of preserved specimens have revealed many new species and variants of hantaviruses in other rodents, shrews, moles and, recently, bats worldwide.
Equipping Museums and Connecting Scientists
Natural history collections have the potential to help revolutionize studies of epidemics and pandemics. But to do this, they will need more support.
Even though they play a foundational role in biology, collections are generally underfunded and understaffed. Many of them lack recent specimens or associated frozen tissues for genetic analyses. Many regions of our planet have been poorly sampled, especially the most biodiverse countries near the tropics.
To leverage biodiversity science for biomedical research and public health, museums will need more field sampling; new facilities to house collections, especially in biodiverse countries; and expanded databases for scientists who collect the samples, analyze DNA sequences and track transmission routes. These investments will require increased funding and innovations in biomedical and biodiversity sciences.
Another challenge is that natural history curators and pathobiologists who study the mechanisms of disease work in separate scientific communities and are only vaguely aware of each other's resources, despite clear benefits for both basic and clinical research. We believe now is the time to reflect on how to leverage diverse resources and build stronger ties between natural history museums, pathobiologists and public health institutions. Collaboration will be key to our ability to predict, and perhaps forestall, future pandemics.
Pamela Soltis is a Distinguished Professor and Curator, Florida Museum of Natural History, University of Florida.
Joseph Cook is a Professor of Biology and Curator, Division of Mammals, Museum of Southwestern Biology, University of New Mexico.
Richard Yanagihara is a Professor of Pediatrics and Principal Investigator, Pacific Center for Emerging Infectious Diseases Research, University of Hawaii.
Disclosure statement: Pamela Soltis receives funding from the National Science Foundation. She serves on leadership boards of the American Institute of Biological Sciences and the American Society of Plant Taxonomists. Joseph Cook receives funding from the National Science Foundation. Richard Yanagihara receives funding from the National Institutes of Health. He works at the John A. Burns School of Medicine, of the University of Hawaii at Manoa.
Reposted with permission from The Conversation.
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Zoonotic Disease Transmission in Markets - EcoWatch ›
- 5 Ways Environmental Damage Drives Diseases Like COVID-19 ... ›
Butterflies across the U.S. West are disappearing, and now researchers say the climate crisis is largely to blame.
- New Clues Help Monarch Butterfly Conservation Efforts - EcoWatch ›
- Monarch Butterflies Will Be Protected Under Historic Deal - EcoWatch ›
EcoWatch Daily Newsletter
California faces another "critically dry year" according to state officials, and a destructive wildfire season looms on its horizon. But in a state that welcomes innovation, water efficacy approaches and drought management could replenish California, increasingly threatened by the climate's new extremes.
- Remarkable Drop in Colorado River Water Use Sign of Climate ... ›
- California Faces a Future of Extreme Weather - EcoWatch ›
Trending
Wisdom the mōlī, or Laysan albatross, is the oldest wild bird known to science at the age of at least 70. She is also, as of February 1, a new mother.
<div id="dadb2" class="rm-shortcode" data-rm-shortcode-id="aa2ad8cb566c9b4b6d2df2693669f6f9"><blockquote class="twitter-tweet twitter-custom-tweet" data-twitter-tweet-id="1357796504740761602" data-partner="rebelmouse"><div style="margin:1em 0">🚨Cute baby alert! Wisdom's chick has hatched!!! 🐣😍 Wisdom, a mōlī (Laysan albatross) and world’s oldest known, ban… https://t.co/Nco050ztBA</div> — USFWS Pacific Region (@USFWS Pacific Region)<a href="https://twitter.com/USFWSPacific/statuses/1357796504740761602">1612558888.0</a></blockquote></div>
The Science Behind Frozen Wind Turbines – and How to Keep Them Spinning Through the Winter
By Hui Hu
Winter is supposed to be the best season for wind power – the winds are stronger, and since air density increases as the temperature drops, more force is pushing on the blades. But winter also comes with a problem: freezing weather.
Comparing rime ice and glaze ice shows how each changes the texture of the blade. Gao, Liu and Hu, 2021, CC BY-ND
Ice buildup changes air flow around the turbine blade, which can slow it down. The top photos show ice forming after 10 minutes at different temperatures in the Wind Research Tunnel. The lower measurements show airflow separation as ice accumulates. Icing Research Tunnel of Iowa State University, CC BY-ND
How ice builds up on the tips of turbine blades. Gao, Liu and Hu, 2021, CC BY-ND
While traditional investment in the ocean technology sector has been tentative, growth in Israeli maritime innovations has been exponential in the last few years, and environmental concern has come to the forefront.
theDOCK aims to innovate the Israeli maritime sector. Pexels
<p>The UN hopes that new investments in ocean science and technology will help turn the tide for the oceans. As such, this year kicked off the <a href="https://www.oceandecade.org/" target="_blank" rel="noopener noreferrer">United Nations Decade of Ocean Science for Sustainable Development (2021-2030)</a> to galvanize massive support for the blue economy.</p><p>According to the World Bank, the blue economy is the "sustainable use of ocean resources for economic growth, improved livelihoods, and jobs while preserving the health of ocean ecosystem," <a href="https://www.sciencedirect.com/science/article/pii/S0160412019338255#b0245" target="_blank" rel="noopener noreferrer">Science Direct</a> reported. It represents this new sector for investments and innovations that work in tandem with the oceans rather than in exploitation of them.</p><p>As recently as Aug. 2020, <a href="https://www.reutersevents.com/sustainability/esg-investors-slow-make-waves-25tn-ocean-economy" target="_blank" rel="noopener noreferrer">Reuters</a> noted that ESG Investors, those looking to invest in opportunities that have a positive impact in environmental, social and governance (ESG) issues, have been interested in "blue finance" but slow to invest.</p><p>"It is a hugely under-invested economic opportunity that is crucial to the way we have to address living on one planet," Simon Dent, director of blue investments at Mirova Natural Capital, told Reuters.</p><p>Even with slow investment, the blue economy is still expected to expand at twice the rate of the mainstream economy by 2030, Reuters reported. It already contributes $2.5tn a year in economic output, the report noted.</p><p>Current, upward <a href="https://www.ecowatch.com/-innovation-blue-economy-2646147405.html" target="_self">shifts in blue economy investments are being driven by innovation</a>, a trend the UN hopes will continue globally for the benefit of all oceans and people.</p><p>In Israel, this push has successfully translated into investment in and innovation of global ports, shipping, logistics and offshore sectors. The "Startup Nation," as Israel is often called, has seen its maritime tech ecosystem grow "significantly" in recent years and expects that growth to "accelerate dramatically," <a href="https://itrade.gov.il/belgium-english/how-israel-is-becoming-a-port-of-call-for-maritime-innovation/" target="_blank" rel="noopener noreferrer">iTrade</a> reported.</p><p>Driving this wave of momentum has been rising Israeli venture capital hub <a href="https://www.thedockinnovation.com/" target="_blank" rel="noopener noreferrer">theDOCK</a>. Founded by Israeli Navy veterans in 2017, theDOCK works with early-stage companies in the maritime space to bring their solutions to market. The hub's pioneering efforts ignited Israel's maritime technology sector, and now, with their new fund, theDOCK is motivating these high-tech solutions to also address ESG criteria.</p><p>"While ESG has always been on theDOCK's agenda, this theme has become even more of a priority," Nir Gartzman, theDOCK's managing partner, told EcoWatch. "80 percent of the startups in our portfolio (for theDOCK's Navigator II fund) will have a primary or secondary contribution to environmental, social and governance (ESG) criteria."</p><p>In a company presentation, theDOCK called contribution to the ESG agenda a "hot discussion topic" for traditional players in the space and their boards, many of whom are looking to adopt new technologies with a positive impact on the planet. The focus is on reducing carbon emissions and protecting the environment, the presentation outlines. As such, theDOCK also explicitly screens candidate investments by ESG criteria as well.</p><p>Within the maritime space, environmental innovations could include measures like increased fuel and energy efficiency, better monitoring of potential pollution sources, improved waste and air emissions management and processing of marine debris/trash into reusable materials, theDOCK's presentation noted.</p>theDOCK team includes (left to right) Michal Hendel-Sufa, Head of Alliances, Noa Schuman, CMO, Nir Gartzman, Co-Founder & Managing Partner, and Hannan Carmeli, Co-Founder & Managing Partner. Dudu Koren
<p>theDOCK's own portfolio includes companies like Orca AI, which uses an intelligent collision avoidance system to reduce the probability of oil or fuel spills, AiDock, which eliminates the use of paper by automating the customs clearance process, and DockTech, which uses depth "crowdsourcing" data to map riverbeds in real-time and optimize cargo loading, thereby reducing trips and fuel usage while also avoiding groundings.</p><p>"Oceans are a big opportunity primarily because they are just that – big!" theDOCK's Chief Marketing Officer Noa Schuman summarized. "As such, the magnitude of their criticality to the global ecosystem, the magnitude of pollution risk and the steps needed to overcome those challenges – are all huge."</p><p>There is hope that this wave of interest and investment in environmentally-positive maritime technologies will accelerate the blue economy and ESG investing even further, in Israel and beyond.</p>- 14 Countries Commit to Ocean Sustainability Initiative - EcoWatch ›
- These 11 Innovations Are Protecting Ocean Life - EcoWatch ›
- How Innovation Is Driving the Blue Economy - EcoWatch ›