Quantcast
Climate
The first smoke from the Camp Fire arrived in Ukiah and turned the daylight red. Bob Dass / Flickr / CC BY 2.0

Winds and Wildfires in California: 4 Factors to Watch That Increase Danger

By Brenda Ekwurzel

Before we dive into the science behind the four factors specific to the California Santa Ana winds, let's review the current situation in California and wildfire disaster risks in general.


California Wildfires November 2018

Scenes of fiery devastation are heartbreaking to see unfolding in the news and social media. In this moment, Nov. 15, there are a dozen active wildfires in California. Communities have been badly burned, some to the very foundations with scarcely a structure left standing. Thousands have evacuated, more than 60 people have lost their lives, some on foot, some trapped in fleeing cars; there are hundreds of people unaccounted for and family worried sick about them. Camp Fire is now the deadliest in California history.

Thousands of firefighters are battling to contain wildfires in the state. At this writing, the deadly Camp fire, near Chico in northern California, is now 141,000 acres and 40 percent contained with 9,700 residences and 290 commercial structures destroyed. In southern California, the Woolsey fire of Los Angeles and Ventura Counties, is now 98,362 acres with 62 percent contained, with 504 destroyed (estimate) and 96 damaged structures.

Wildfires Disaster Risks

Let us briefly review wildfire disaster risks in general. First, wildfires can be ignited by natural causes such as lighting strikes or by various human activities at the wildland urban interface (WUI), such as when a lit cigarette is tossed or when electricity infrastructure fails. Power lines may be implicated in the tragic November 2018 Camp Fire. According California data from 2007 to 2016, around 5 percent of wildfire ignitions were from power lines and were around 11 percent of the acres burned.

Camp Fire smoke across portions of Northern California. NOAA-20 satellite image Nov. 8 at 8:40 p.m. Pacific Time. NESDIS / NOAA

Fire suppression, which has cost the California Department of Forestry and Fire Protection (CAL FIRE) an estimated average of $554 million per year for the past five years, leaves more vegetation intact. In many places, more vegetation, also referred to as 'fuel,' is available to burn for the next fire.

In the western U.S., vegetation is more flammable than the 1970s with around half of the vegetation drying attributed to human-caused climate change. Hence, when fires strike in the western U.S., they are more likely to burn parched vegetation that serve as a tinder box fueling more severe wildfire today compared with the 1970s.

Tragically, when wildfires encounter homes, schools and businesses it can become a dangerous situation. Not just the structures at the site of the fire are at risk. Smoke from wildfires can be lethal locally and a public health hazard when transported far downwind. Wildfire smoke can disproportionately increase health risks for children or those with heart disease or lung disease. Among the top 20 deadliest California wildfires from 1933 through November 2018, nearly a third were in 2017 and 2018. We can and must do better to protect lives from risks posed by dangerous wildfires.

Santa Ana Winds

Santa Ana winds in California, sometimes referred to as Diablo winds in the San Francisco Bay area downwind of Mount Diablo, can promote ignition and rapid spread of wildfires by drying vegetation and fanning the flames of fires once they are started. The Santa Ana winds dry out soils, trees and other vegetation much like a clothes dryer does a pair of jeans. Like an efficient dryer, Santa Ana winds increase both airflow and temperature to speed up evaporation of water. But instead of leaving behind freshly fluffed jeans, these winds suck out moisture and prime ecosystems to burn.

Santa Ana influenced fires, which occur between October and April, are different from the warm and dry season fires, that typically occur between June and September. Scientists have found the main reasons why Santa Ana influenced fires contribute the vast majority of cumulative economic losses in California compared to other wildfires that typically occur in the summer. From 1990-2009, Santa Ana influenced fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Over the same years, other fires often occurred in higher elevation forests, were more sensitive to how old the vegetation was, lasted for extended periods, and accounted for 70 percent of total suppression costs. In other words, other fires burned in remote forests, often with plenty of mature vegetation or "fuel" for long-lasting wildfires. Whereas Santa Ana influenced fires scorched with greater speed through areas that were typically closer to more people.

Factors to Watch for to Protect Communities From Fires Exacerbated by Santa Ana Winds

Santa Ana winds have a name because they are naturally occurring seasonal winds that typically peak during the autumn. The season bridges the end of the typically hot and dry summer from the typically rainy winter season in California. California oscillates between wet years and dry years, with the prevalence of dry years outpacing the wet years. Drought years increase the risk of desiccated soils and parched vegetation that form ready fuel for wildfires. When these conditions occur simultaneously with Santa Ana winds, they can influence the severity of wildfires. Four factors influence the severity of winds during the autumn to winter season in California and are worth monitoring and providing timely and effective warnings for the public at risk.

Factor 1: Pressure Difference Between Western North America High-Elevation Basins and Pressure Off the Pacific Coast

During the autumn season, a typical weather pattern can set up that is favorable for the occurrence of Santa Ana winds. A high-pressure pattern predominates over western north America while a low -pressure pattern predominates over the Pacific Ocean. As a result, the predominant flow of air is from the interior basins, places like Nevada, to the Pacific Ocean. When this weather pattern sets up, pay close attention to local meteorological reports and fire warnings. This weather pattern is similar to turning on the clothes dryer.

700-h Pascal height anomalies for Oct. 25, 2003, ignition date for Cedar fire, near San Diego California.Westerling et al., 2004 EOS

Factor 2: Temperature

The air starts out at a cool temperature emanating from the autumn conditions of western U.S. The air encounters California mountain ranges and flows through the high elevation mountain passes and heads downslope. The air compresses both due to constriction of the air flowing through the narrow canyon as well as the higher atmospheric pressure at lower elevations (see figure). The molecules of the air parcel are now closer together, bump into each other, and have "higher kinetic energy." Therefore as a parcel of air gets compressed, its temperature increases. This is similar to setting the clothes dryer temperature setting to warm or hot.

Factor 3: How Dry the Air is

Santa Ana winds become drier during their journey downslope. Why does this happen? An air parcel starting at a cool temperature contains a low amount of water vapor. If that same air parcel warms, such as described above, it can now hold more water vapor and therefore the relative humidity drops. Put another way, for the same amount of water vapor, the relative humidity is higher in cool air compared to warm air. Hence, the Santa Ana winds become drier and can increase water loss from vegetation that often is already quite dry during drought years or at the end of a summer season. This is like shifting the auto-dry level from less dry to more dry on a clothes dryer.

Red columns indicate atmospheric pressure. Higher atmospheric pressure at sea level than on top of a mountain. NASA GISS

Factor 4: Speed of the Wind

Another consequence occurs when the air flowing through California coastal ranges is constricted through narrow mountain passes and flows down through the canyons. This constriction increases the wind speed above the initial wind speed before passing through the narrow mountain topography. Similar to shifting the cycle from "delicate" to "heavy duty" on a clothes dryer. Santa Ana winds have speeds of 40-60 kilometers/hour (25-37 miles/hour) or in extreme cases more than 100 km/hr (62 mi/hr). It can be extremely difficult to outrun such winds or drive away along canyon roads with neighbors who may be fleeing at the same time. Such winds can help fires grow rapidly, spread quickly and become deadly.

Santa Ana Winds are a natural seasonal occurrence. Scientists are studying the consequences of climate change and how warmer background conditions interact with the four factors described above. The findings have the potential to better inform advanced warnings for populations and first responders confronting the risks of Santa Ana wind influenced wildfires.

Brenda Ekwurzel is a senior climate scientist and the director of climate science at the Union of Concerned Scientists.

Show Comments ()

EcoWatch Daily Newsletter

Sponsored
Energy
Mackinac Bridge from Straits of Mackinac. Gregory Varnum / Wikimedia Commons

Michigan Gov. Signs Bill to Keep Line 5 Pipeline Flowing

Michigan's outgoing Gov. Rick Snyder signed legislation on Wednesday that creates a new government authority to oversee a proposed oil tunnel in the Straits of Mackinac to effectively allow Canadian oil to keep flowing through the Great Lakes.

The controversial tunnel will encase a replacement segment for Enbridge Energy's aging Line 5 pipelines that run along the bottom of the Straits, a narrow waterway that connects Lakes Huron and Michigan.

Keep reading... Show less
Popular
The illegal La Pampa gold mine, seen here in 2017, has devastated the Peruvian Amazon and spread poisonous mercury. Planet Labs

Unprecedented New Map Unveils Illegal Mining Destroying Amazon

A first-of-its-kind map has unveiled widespread environmental damage and contamination of the Amazon rainforest caused by the rise illegal mining.

The survey, released Monday by the Amazon Socio-Environmental Geo-Referenced Information Project (RAISG), identifies at least 2,312 sites and 245 areas of prospecting or extraction of minerals such as gold, diamonds and coltan in six Amazonian countries—Bolivia, Brazil, Colombia, Ecuador, Peru and Venezuela. It also identified 30 rivers affected by mining and related activities.

Keep reading... Show less
Animals
Mako sharks killed at the South Jersey Shark Tournament in June 2017. Lewis Pugh

Shark Fishing Tournaments Devalue Ocean Wildlife and Harm Marine Conservation Efforts

By Rick Stafford

Just over three years ago, I was clinging to a rock in 20 meters of water, trying to stop the current from pulling me out to sea. I peered out into the gloom of the Pacific. Suddenly, three big dark shapes came into view, moving in a jerky, yet somehow smooth and majestic manner. I looked directly into the left eyes of hammerhead sharks as they swam past, maybe 10 meters from me. I could see the gill slits, the brown skin. But most of all, what struck me was just how big these animals are—far from the biggest sharks in the seas, but incredibly powerfully built and solid. These are truly magnificent creatures.

Keep reading... Show less
Politics
Sen. Joe Manchin and United Mine Workers of America President Cecil Roberts held a press conference on Oct. 3, 2017. Bill Clark / CQ Roll Call

Coal-Friendly Manchin Named Top Dem on Senate Energy Panel

After weeks of discord over the potential appointment, Sen. Joe Manchin, the pro-coal Democrat of West Virginia, was named the ranking member of the Senate Committee on Energy and Natural Resources, Sen. Chuck Schumer announced Tuesday.

Many Democrats and environmental groups were adamantly opposed to Manchin serving as the top Democrat on the committee that oversees policies on climate change, public lands and fossil fuel production.

Keep reading... Show less
Sponsored
Insights/Opinion
Hikers on the Mt. Hollywood Trail in Griffin Park, Calif. while a brush fire burned in the Angeles National Forest on Aug. 26, 2009. Mel Melcon / Los Angeles Times via Getty Images

Major Health Study Shows Benefits of Combating Climate Change

During the holiday season, people often drink toasts to health. There's something more we can do to ensure that we and others will enjoy good health now and into the future: combat climate change.

Keep reading... Show less
Energy
Employees of Rural Renewable Energy Alliance working together with students and faculty of Leech Lake Tribal Collage to construct solar panels, 2017. Ryan James White

A Tribe in Northern Minnesota Shows the Country How to Do Community Solar

By Susan Cosier

Last summer on a reservation in northern Minnesota, students from Leech Lake Tribal College earned their solar installation licenses while they dug, drilled and connected five photovoltaic arrays. The panels shine blue on the plain, reflecting the sky as they generate roughly 235 megawatts of electricity a year, enough to help 100 families pay their energy bills. This is community solar in action.

Keep reading... Show less
Sponsored
Energy
Arches National Park. Chris Dodds / Flickr / CC BY-SA 2.0

Trump Auctions Off 150,000 Acres of Public Lands for Fracking Near Utah National Parks

On Tuesday the Trump administration offered more than 150,000 acres of public lands for fossil-fuel extraction near some of Utah's most iconic landscapes, including Arches and Canyonlands national parks.

Keep reading... Show less
Climate
The Vanderford glacier in East Antarctica is one of four that is beginning to melt, according to NASA. Angela Wylie / Fairfax Media / Fairfax Media via Getty Images

Melting Discovered in East Antarctic Region Holding Ice 'Equivalent to Four Greenlands'

Ice sheets in Greenland and West Antarctica have been melting at alarming rates in recent years, but at least the glaciers of East Antarctica were believed to be relatively stable. Until now. National Aeronautics and Space Administration (NASA) scientists have discovered that glaciers covering one-eighth of Antarctica's eastern coast have lost ice in the past 10 years. If the region keeps melting, it has enough ice in its drainage basins to add 28 meters (approximately 92 feet) to global sea level rise, BBC News reported.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!