Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Who Will Win the Tidal Wave Energy Race?

Business
Who Will Win the Tidal Wave Energy Race?

A race is on worldwide to harness the tides and waves for electrical power, with more than 100 different devices being tested by companies hoping to make a commercial breakthrough.

Atlantic waves rush ashore in Mayo on the west coast of Ireland. Photo credit: Robert Bone / Wikimedia Commons

And a new report from the European Union’s Joint Research Centre expresses confidence that the Atlantic Ocean will soon be an important contributor to the continent’s energy mix.

It adds that many other countries with big tidal ranges and long coasts are also banking on this form of renewable energy to help reduce fossil fuel use.

For years, it has been predicted that the vast quantities of energy available in the oceans would be harnessed by human ingenuity to provide without the need for burning fossil fuels, but progress has been slower than expected.

Different Techniques

While it has proved possible to generate  electricity with many different techniques, scaling these up into large-scale power stations to supply the electricity grid has not so far been economic.

The two most promising basic ideas are to use the currents and the build-up of water at each tide to drive turbines to make electricity, or to convert the power in wave motions to energy.

In Europe, the countries with Atlantic Ocean coastlines—the UK, Ireland, France, Spain, Denmark, the Netherlands and Norway—are all developing technologies. And in 2014, the EU launched what it called its Blue Energy Action plan to finance and encourage development. The latest report details progress so far.

Most of the technologies are not new ideas, but the trick is turning a demonstration model into a viable power station.

The one exception is tidal energy in the form of a barrage across a river, which has been in use for years.

The best known is the 240 megawatt (MW) La Rance tidal barrage in France, operating successfully since 1966. Another 254 MW tidal plant has opened in Sihwa in South Korea, and other barrages producing at total 2,680 MW are planned worldwide—although  many  have proved controversial because of their  effects on fish and birds.

Tidal lagoons—reservoirs that stand in an estuary or close to the shore, and which fill and then empty with each tidal cycle—have  now won much more favour, and one is  being developed in Swansea Bay in south Wales.

The worldwide potential of this technology is estimated at 80 gigawatts (GW), or the equivalent of 80 large coal-fired power stations.

Already in successful operation at some sites, but yet to be scaled up to full commercial development, are underwater turbines—similar to wind turbines—that use the energy in tidal streams to make electricity.

In Europe, these devices will be viable in countries with high tides and strong tidal streams—particularly France, Ireland, Norway and the UK, but also  in some parts of Belgium, Italy and the Netherlands. These are believed to offer  the highest net potential contribution  to the European energy system, according to the report.

The first large-scale tidal array is being built in the Pentland Firth, off northern Scotland. It will provide power to 175,000 homes.

New Connections

Like the deployment of wind farms, potential tidal power arrays are often in remote locations far from cities. The report points out that these technologies will require new grid connections and integration into the European grid to get most value from them.

A new generation of devices not placed on the sea bed, but either floating like kites on a string or operating from platforms, is under development. Their advantage is that they avoid the cost of being built on the sea bed, and can also  exploit the greater strength of the tides nearer the surface of the sea.

Some of the materials being used to build devices to withstand the power of the sea, and the methods being used, are being kept secret for commercial reasons, but they have some of the biggest companies in Europe as their backers.

Another new generation of micro-turbines, owned by coastal communities and anchored offshore to take advantage of tidal flows, is under development. These could give communities isolated from the grid their own power source, like solar panels do in remote parts of Africa and Asia.

There are an estimated 100 companies developing tidal energy devices worldwide, half of them  in the EU, where many are supported by development grants. Four tidal energy stations are already in operation in Europe, and another 31 are expected to be completed by the end of 2016. Many more are in the planning stage.

The commercial advantage of tidal devices is that, unlike some other forms of renewable energy, the tides are predictable years in advance. Wave power, on the other hand, suffers because of its unpredictability and the need to make devices robust enough to stand up to the battering  they receive.

Potential Supply

That has not stopped a large number of development projects being built, principally because the potential energy supply is vast—30 times higher than tidal energy.

Some devices have already been operating successfully for 10 years, producing regular quantities of electricity, but they were built as demonstration models and not on a commercial scale.

Building structures large enough to produce a regular power supply at a cost that could be commercial has proved elusive, but the report describes a number of devices that are close to achieving commercial viability.

There are at least nine different technologies using wave power, and 170 wave energy developers worldwide.

The report also discusses technologies that use the different gradients of salinity in the sea to produce power, and the different water temperatures to generate energy.

However, it argues that both these ideas, while viable in theory, are further away from commercial operation in Europe than tidal stream or wave power.

YOU MIGHT ALSO LIKE

5 Things You May Have Missed About Elon Musk’s Tesla Battery Announcement

America’s First Offshore Wind Farm Breaks Ground

Solar Capacity in the U.S. Enough to Power 4 Million Homes

Eating too much black licorice can be toxic. Nat Aggiato / Pixabay

By Bill Sullivan

Black licorice may look and taste like an innocent treat, but this candy has a dark side. On Sept. 23, 2020, it was reported that black licorice was the culprit in the death of a 54-year-old man in Massachusetts. How could this be? Overdosing on licorice sounds more like a twisted tale than a plausible fact.

Read More Show Less

EcoWatch Daily Newsletter

Sustainable t-shirts by Allbirds are made from a new, low-carbon material that uses a mineral extract from discarded snow crab shells. Jerry Buttles / Allbirds

In the age of consumption, sustainability innovations can help shift cultural habits and protect dwindling natural resources. Improvements in source materials, product durability and end-of-life disposal procedures can create consumer products that are better for the Earth throughout their lifecycles. Three recent advancements hope to make a difference.

Read More Show Less

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less

Support Ecowatch