
Magnus Larsson / iStock / Getty Images Plus
By Rachel Kaufman
Humans produce hundreds of millions of tons of plastic every year. As much as 12.7 million metric tons of it ends up in the ocean, where it can transport pathogens, or be mistaken for food by hungry animals.
Some is visible to the naked eye—but not all plastic pollution is obvious.
The ocean is full of microplastics 5 millimeters or smaller, about the size of a pencil eraser. At those small sizes, it can be difficult to identify where the plastic came from. Was that tiny chunk part of a water bottle or a fishing lure?
A new project at NOAA's Northeast Fisheries Science Center in Sandy Hook, New Jersey, aims to find out. Knowing what types of plastics are most common in the ocean could help prevent the pollution in the first place.
Chemical Forensics
More than 60 percent of the debris swirling through the oceans is plastic. But plastics are not all the same. They're made of different chemical building blocks and have different densities. Plastic bags are made of polyethylene, margarine tubs are made of polypropylene. Both are lighter than seawater, so those plastics float. Other plastics are heavier, so they can be found deeper in the water column or sink to the bottom.
It's not just their densities that are different. Different plastics absorb contaminants and disease-causing microbes differently and can have different toxic effects. Knowing which types are most prevalent in what parts of the ocean, "will help us find out what is polluting the environment," said Ashok Deshpande, a research chemist at NOAA's Northeast Fisheries Science Center whose team is among the first to chemically identify ocean plastics using gas chromatography-mass spectrometry. The technique identifies materials based on their component parts, with the goal to create a reference library of plastics, so that scientists can identify contaminants when they're found.
Armando da Costa Duarte, a chemist at University of Aveiro, Portugal, who co-edited an academic book on chemistry and microplastics that included a chapter on mass spectrometry, said that the method is "relatively new" for ocean plastic, but that others have been working toward it. It is "a well-established method of analysis that can bring complementary information" to other techniques for chemically identifying plastic, he said by email.
It's another tool in scientists' toolbox to figure out just what's out there—and what to do about it.
So far, the NOAA project has identified various plastics from the Gulf of Mexico and beaches in Hawaii, Alaska and New Jersey. Nigel Lascelles, a NOAA Educational Partnership Program scholar, worked on the initial analyses.
The team successfully identified all but one of the scraps of collected plastic, and then some—the researchers also detected toxins like phthalates, commonly used to soften some plastics, flame retardants and—no joke—cannabidiol, a naturally occurring component of cannabis. "I don't know how that would be on plastic," Lascelles said.
Urgent Work
Next, the team plans to examine the contents of a sea turtle's stomach and samples from seabirds that ate microplastics. The chemical analysis could help identify which plastics wildlife are consuming most often. The NOAA scientists are also hoping to determine the origin of ocean microplastics by looking at additives. "Products used for human consumption may not have additives like flame retardants," Deshpande said, which could help differentiate a tossed soda bottle from an industrial component like an aircraft interior.
The work is more urgent than ever, with research showing upwards of 236,000 metric tons of microplastic particles floating on the surface of the ocean, a tiny fraction of all the plastic out there. Sea life eats a lot of it. A recent study found that baby sea turtles are dying by ingesting tiny pieces of plastic that cause intestinal blockage or nutritional deficiency. Another study, from 2017, found that small fish like anchovies are eating microplastic but possibly surviving long enough to be eaten by larger predators. That's a problem since plastics—and their associated chemical contaminants—could build up in the bodies of larger fish. Knowing more about where the plastics came from and what they are made of can help improve habitat management for fish and other marine life.
What remains clear is that when it comes to plastics in the ocean, our knowledge is just scratching the surface. "What science has analyzed so far," Deshpande said, "is a fraction of the total plastic waste into the ocean."
- 90% of Table Salt Is Contaminated With Microplastics ›
- Microplastics Detected in Human Stool Samples for First Time ›
New fossils uncovered in Argentina may belong to one of the largest animals to have walked on Earth.
- Groundbreaking Fossil Shows Prehistoric 15-Foot Reptile Tried to ... ›
- Skull of Smallest Known Dinosaur Found in 99-Million-Year Old Amber ›
- Giant 'Toothed' Birds Flew Over Antarctica 40 Million Years Ago ... ›
- World's Second-Largest Egg Found in Antarctica Probably Hatched ... ›
EcoWatch Daily Newsletter
A federal court on Tuesday struck down the Trump administration's rollback of the Obama-era Clean Power Plan regulating greenhouse gas emissions from power plants.
- Pruitt Guts the Clean Power Plan: How Weak Will the New EPA ... ›
- It's Official: Trump Administration to Repeal Clean Power Plan ... ›
- 'Deadly' Clean Power Plan Replacement ›
Trending
By Jonathan Runstadler and Kaitlin Sawatzki
Over the course of the COVID-19 pandemic, researchers have found coronavirus infections in pet cats and dogs and in multiple zoo animals, including big cats and gorillas. These infections have even happened when staff were using personal protective equipment.
Gorillas have been affected by human viruses in the past and are susceptible to the coronavirus. Thomas Fuhrmann via Wikimedia Commons, CC BY-SA
- Gorillas in San Diego Test Positive for Coronavirus - EcoWatch ›
- Wildlife Rehabilitators Are Overwhelmed During the Pandemic. In ... ›
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Utah Mink Becomes First Wild Animal to Test Positive for Coronavirus ›
By Peter Giger
The speed and scale of the response to COVID-19 by governments, businesses and individuals seems to provide hope that we can react to the climate change crisis in a similarly decisive manner - but history tells us that humans do not react to slow-moving and distant threats.
A Game of Jenga
<p>Think of it as a game of Jenga and the planet's climate system as the tower. For generations, we have been slowly removing blocks. But at some point, we will remove a pivotal block, such as the collapse of one of the major global ocean circulation systems, for example the Atlantic Meridional Overturning Circulation (AMOC), that will cause all or part of the global climate system to fall into a planetary emergency.</p><p>But worse still, it could cause runaway damage: Where the tipping points form a domino-like cascade, where breaching one triggers breaches of others, creating an unstoppable shift to a radically and swiftly changing climate.</p><p>One of the most concerning tipping points is mass methane release. Methane can be found in deep freeze storage within permafrost and at the bottom of the deepest oceans in the form of methane hydrates. But rising sea and air temperatures are beginning to thaw these stores of methane.</p><p>This would release a powerful greenhouse gas into the atmosphere, 30-times more potent than carbon dioxide as a global warming agent. This would drastically increase temperatures and rush us towards the breach of other tipping points.</p><p>This could include the acceleration of ice thaw on all three of the globe's large, land-based ice sheets – Greenland, West Antarctica and the Wilkes Basin in East Antarctica. The potential collapse of the West Antarctic ice sheet is seen as a key tipping point, as its loss could eventually <a href="https://science.sciencemag.org/content/324/5929/901" target="_blank">raise global sea levels by 3.3 meters</a> with important regional variations.</p><p>More than that, we would be on the irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters, roughly at the rate of two meters per century, or maybe faster. Just look at the raised beaches around the world, at the last high stand of global sea level, at the end of the Pleistocene period around 120,0000 years ago, to see the evidence of such a warm world, which was just 2°C warmer than the present day.</p>Cutting Off Circulation
<p>As well as devastating low-lying and coastal areas around the world, melting polar ice could set off another tipping point: a disablement to the AMOC.</p><p>This circulation system drives a northward flow of warm, salty water on the upper layers of the ocean from the tropics to the northeast Atlantic region, and a southward flow of cold water deep in the ocean.</p><p>The ocean conveyor belt has a major effect on the climate, seasonal cycles and temperature in western and northern Europe. It means the region is warmer than other areas of similar latitude.</p><p>But melting ice from the Greenland ice sheet could threaten the AMOC system. It would dilute the salty sea water in the north Atlantic, making the water lighter and less able or unable to sink. This would slow the engine that drives this ocean circulation.</p><p><a href="https://www.carbonbrief.org/atlantic-conveyor-belt-has-slowed-15-per-cent-since-mid-twentieth-century" target="_blank">Recent research</a> suggests the AMOC has already weakened by around 15% since the middle of the 20th century. If this continues, it could have a major impact on the climate of the northern hemisphere, but particularly Europe. It may even lead to the <a href="https://ore.exeter.ac.uk/repository/handle/10871/39731?show=full" target="_blank" rel="noopener noreferrer">cessation of arable farming</a> in the UK, for instance.</p><p>It may also reduce rainfall over the Amazon basin, impact the monsoon systems in Asia and, by bringing warm waters into the Southern Ocean, further destabilize ice in Antarctica and accelerate global sea level rise.</p>The Atlantic Meridional Overturning Circulation has a major effect on the climate. Praetorius (2018)
Is it Time to Declare a Climate Emergency?
<p>At what stage, and at what rise in global temperatures, will these tipping points be reached? No one is entirely sure. It may take centuries, millennia or it could be imminent.</p><p>But as COVID-19 taught us, we need to prepare for the expected. We were aware of the risk of a pandemic. We also knew that we were not sufficiently prepared. But we didn't act in a meaningful manner. Thankfully, we have been able to fast-track the production of vaccines to combat COVID-19. But there is no vaccine for climate change once we have passed these tipping points.</p><p><a href="https://www.weforum.org/reports/the-global-risks-report-2021" target="_blank">We need to act now on our climate</a>. Act like these tipping points are imminent. And stop thinking of climate change as a slow-moving, long-term threat that enables us to kick the problem down the road and let future generations deal with it. We must take immediate action to reduce global warming and fulfill our commitments to the <a href="https://www.ipcc.ch/sr15/" target="_blank" rel="noopener noreferrer">Paris Agreement</a>, and build resilience with these tipping points in mind.</p><p>We need to plan now to mitigate greenhouse gas emissions, but we also need to plan for the impacts, such as the ability to feed everyone on the planet, develop plans to manage flood risk, as well as manage the social and geopolitical impacts of human migrations that will be a consequence of fight or flight decisions.</p><p>Breaching these tipping points would be cataclysmic and potentially far more devastating than COVID-19. Some may not enjoy hearing these messages, or consider them to be in the realm of science fiction. But if it injects a sense of urgency to make us respond to climate change like we have done to the pandemic, then we must talk more about what has happened before and will happen again.</p><p>Otherwise we will continue playing Jenga with our planet. And ultimately, there will only be one loser – us.</p>By John R. Platt
The period of the 45th presidency will go down as dark days for the United States — not just for the violent insurgency and impeachment that capped off Donald Trump's four years in office, but for every regressive action that came before.
- Biden Announces $2 Trillion Climate and Green Recovery Plan ... ›
- How Biden and Kerry Can Rebuild America's Climate Leadership ... ›
- Biden's EPA Pick Michael Regan Urged to Address Environmental ... ›
- How Joe Biden's Climate Plan Compares to the Green New Deal ... ›