Quantcast

Protecting the World’s Wetlands: 5 Essential Reads

Insights + Opinion
Marshes at Blackwater National Wildlife Refuge on Maryland's eastern shore. Ataraxy22 / Wikimedia, CC BY-SA

By Jennifer Weeks

World Wetlands Day on Feb. 2 marks the date when 18 nations signed the Convention on Wetlands in 1971, in the Iranian city of Ramsar on the shores of the Caspian Sea. Since that time, scientists have shown that wetlands provide many valuable services, from buffering coasts against floods to filtering water and storing carbon. These five articles from our archive highlight wetlands' diversity and the potential payoffs from conserving and restoring them.


1. Soaking Up Floodwaters

Wetlands line coasts in many parts of the world. They act as natural sponges that soak up floodwaters and absorb force from storm surges, protecting communities further inland.

Working with Lloyds of London, UC Santa Cruz researchers Siddharth Narayana and Michael Beck sought to quantify the value of these functions. Using insurance industry storm surge models, they calculated that during Hurricane Sandy in 2012, wetlands along the U.S. Atlantic coast prevented more than $625 million in direct property damage by reducing storm surge. They also estimated that marshes in Barnegat Bay, New Jersey reduced annual losses from flooding during smaller storms by an average of 16 percent, and up to 70 percent in some locations.

Narayan and Beck see restoring wetlands as an effective way to make coastal communities more resilient against storms and flooding:

"Across the United States, the Caribbean and Southeast Asia, coastal communities face a crucial question: Can they rebuild in ways that make them better prepared for the next storm, while also conserving the natural resources that make these locations so valuable? Our work shows that the answer is yes."

2. Carbon-Rich Mud

Wetlands store large quantities of carbon in plant tissue and soils. But as climate expert Williams Moomaw and wetland scientists Gillian Davies and Max Finlayson point out, no global climate change agreement calls for protecting wetlands as a way to slow climate change. And around the globe, wetlands are constantly being drained, diked and paved over.

Coastal wetlands can extend well inland, transitioning from saltwater to brackish and freshwater. EPA

In contrast, forest protection gets a special section in the Paris agreement, which offers developing countries incentives to protect and expand tropical forests as carbon sinks. Moomaw, Davies and Finlayson believe wetlands deserve equal attention:

"In our view, instead of draining swamps and weakening protections, governments at all levels should take action immediately to conserve and restore wetlands as a climate strategy. Protecting the climate and avoiding climate-associated damage from storms, flooding and drought is a much higher use for wetlands than altering them for short-term economic gains."

3. 'Blue Carbon' Banks

Mangrove forests, which grow in salt water in tropical regions, are especially effective at locking up "blue carbon"—so called to distinguish it from "green" carbon storage on land. Louisiana State University scientists Robert Twilley and Andre Rovai estimate that "the wood and soil of mangrove forests along the world's coastlines hold 3 billion metric tons of carbon—more than tropical forests."

Mangrove forest in wetlands of Lebak, Sultan Kudarat, PhilippinesBonvallite / Wikimedia, CC BY-SA

Coastal development is an enormous threat to mangroves, whether for vacation homes in Florida or aquaculture farms in Asia. Twilley and Rovai wanted to pinpoint what type of mangroves were the most effective at storing carbon. By comparing conditions in different settings where mangroves flourish, they determined that river deltas and estuaries offer the best conditions for mangrove growth and carbon uptake:

"Overall, mangroves in deltaic coasts such as the Mississippi River delta, the Amazon in Brazil and the Sundarbans in India and Bangladesh can sequester more carbon yearly than any other aquatic or terrestrial ecosystem on the globe. These are the world's blue carbon hot spots."

4. Mangroves Versus Marshes

Mangroves are actually benefiting from climate change in some regions, such as Florida and the Gulf of Mexico. Villanova University biologist Samantha Chapman has found that mangroves are becoming more abundant in these areas, moving into zones formerly dominated by salt marshes, which typically are found in cooler zones.

Mangroves protect coasts more effectively against large waves, so this change isn't necessarily harmful. However, as Chapman says:

" ... it is important to note that marsh plants provide important habitats for numerous species of birds and fish. We don't yet know how these animals will fare as mangroves replace marshes, nor do we yet understand other downsides of plant range shifts due to climate change."

Moreover, she notes, mangroves are not building new shoreline quickly enough to keep up with sea level rise in all locations. As her findings show, there is still much to learn about how climate change will affect different types of wetlands in various locations.

Saving One of the Most Pristine Wetlands on Earth | National Geographic youtu.be

5. Small Streams, Big Roles

Wetlands aren't just found along the coasts. Many major rivers, such as the Colorado and the Mississippi, start as networks of small streams, some of which may only flow during certain seasons or when it rains. But as Colorado State University geoscientist Ellen Wohl explains, a lot happens in these small tributaries and isolated wetlands that affects the larger rivers downstream:

"Marvelously adapted organisms in dry streams wait for periods when life-giving water flows in. When the water comes, these creatures burst into action … Amphibians move down from forests to temporarily flooded vernal wetlands to breed. Tiny fish, such as brassy minnows … speed through breeding and laying eggs that then grow into mature fish in a short period of time."

Brassy minnows, found throughout the northern U.S. and Canada, live in cool, slow moving streams, creeks, overflow ponds near rivers, boggy lakes and ditches.Ellen Wohl, CC BY-ND

Small channels in river networks also harbor microbes that are very good at removing contaminants from the water. And these channels slow down heavy rainfalls, allowing water to soak into the ground and reducing the risk of flooding downstream.

The Trump administration is seeking to rewrite a key section of the Clean Water Act, eliminating federal protection for many of these small streams and wetlands. Such action, Wohl contends, "will strip rivers of their ability to provide water clean enough to support life, and will enhance the spiral of increasingly damaging floods that is already occurring nationwide."

Jennifer Weeks is the Environment + Energy editor of The Conversation.

Reposted with permission from our media associate The Conversation.

EcoWatch Daily Newsletter

By Gretchen Goldman

The Independent Particulate Matter Review Panel has released their consensus recommendations to the EPA administrator on the National Ambient Air Quality Standards for Particulate Matter. The group of 20 independent experts, that were disbanded by Administrator Wheeler last October and reconvened last week, hosted by the Union of Concerned Scientists, has now made clear that the current particulate pollution standards don't protect public health and welfare.

Read More Show Less
An African elephant is pictured on November 19, 2012, in Hwange National Park in Zimbabwe. MARTIN BUREAU / AFP / Getty Images

The unprecedented drought that has caused a water crisis in Zimbabwe has now claimed the life of at least 55 elephants since September, according to a wildlife spokesman, as CNN reported.

Read More Show Less
Sponsored
Maria Dornelas.

By John C. Cannon

Life is reshuffling itself at an unsettling clip across Earth's surface and in its oceans, a new study has found.

Read More Show Less
An Exxon station in Florida remains open despite losing its roof during Hurricane Katrina on Aug. 29, 2005. Florida Air National Guard photo by Master Sgt. Shaun Withers

The country's largest fossil fuel company goes on trial today to face charges that it lied to investors about the safety of its assets in the face of the climate crisis and potential legislation to fight it, as the AP reported.

Read More Show Less
El Niño's effect on Antarctica is seen in a tabular iceberg off of Thwaites ice shelf. Jeremy Harbeck / NASA

El Niños are getting stronger due to climate change, according to a new study in Monday's Proceedings of the National Academy of Sciences.

Read More Show Less
Sponsored

By Julia Ries

  • Antibiotic resistance has doubled in the last 20 years.
  • Additionally a new study found one patient developed resistance to a last resort antibiotic in a matter of weeks.
  • Health experts say antibiotic prescriptions should only be given when absolutely necessary in order to avoid growing resistance.

Over the past decade, antibiotic resistance has emerged as one of the greatest public health threats.

Read More Show Less
Pexels


There are hundreds of millions of acres of public land in the U.S., but not everyone has had the chance to hike in a national forest or picnic in a state park.

Read More Show Less
Workers attend to a rooftop solar panel project on May 14, 2017 in Wuhan, China. Kevin Frayer / Getty Images

By Simon Evans

Renewable sources of electricity are set for rapid growth over the next five years, which could see them match the output of the world's coal-fired power stations for the first time ever.

Read More Show Less