Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Protecting Wetlands Yields Staggering Economic Benefit, Study Finds

Climate
Protecting Wetlands Yields Staggering Economic Benefit, Study Finds
Orlando Wetlands Park in central Florida. Bkamprath / iStock/ Getty Images Plus

By Kimberly M.S. Cartier

Mangrove forests, marshes and seagrass beds protect inland areas from storm surges and strong winds. Over long periods, coastal wetlands like these build up sediment that mitigates sea level rise and local land subsidence.


A new analysis of property damage from Atlantic and Gulf of Mexico coastal storms has shown that counties with larger wetlands suffered lower property damage costs than did counties with smaller wetlands.

"Starting in 1996, the U.S. government started to produce damage estimates for each tropical cyclone in a consistent manner," explained coauthor Richard Carson, an economist at the University of California, San Diego (UCSD) in La Jolla. Before that, the data were collected only for hurricanes, which hindered past attempts to put a price on the marginal value, or price per unit, of wetlands, he said.

With the complete data set, the researchers examined all 88 tropical cyclones and hurricanes that affected the U.S. starting in 1996. That time period includes Hurricanes Katrina and Sandy.

A Protective and Economic Boon

In addition to property damage data for tropical cyclones of all strengths, "our data set has considerably more spatial resolution," Carson said, "which is a result of large amounts of information on storm tracks, property location, and wetland location all being digitized for use in a geographical information system basis."

First author Fanglin Sun, formerly at UCSD and now an economist at Amazon.com, added that "areas subject to flood risk in a county are more accurately estimated, based on local elevation data and detailed information on individual storm trajectories" and wind speeds throughout affected areas.

The finer level of detail for the storm data let the researchers finally begin connecting wetland coverage and storm damage on a county-by-county basis, Carson said. "A storm track moving a couple of kilometers one direction or the other allows the amount of wetland protection to vary within the same county."

In terms of property damage, Sun and Carson found that a square kilometer of wetlands saved an average of $1.8 million per year. Over the next 30 years, an average unit of wetlands could save $36 million in storm damage.

Some wetlands were valued at less than $800 per year per square kilometer and some at nearly $100 million. That marginal value depended on many factors, including a county's property values, existing wetland coverage, coastline shape, elevation, building codes, and chance of actually experiencing damaging winds. And each of those variables fluctuated over the 20 years the team studied.

Overall, the highest-valued wetlands were in urban counties with large populations and the lowest-valued were in rural areas with small populations. However, wetlands provided a greater relative savings against weaker cyclones and in counties with less stringent building codes — areas that might not expect or plan for a tropical storm.

The team found no significant difference in the marginal value of saltwater versus freshwater wetlands or mangroves versus marshes. "Forested wetlands tend to be better at reducing wind speed and marshes tend to be better at absorbing water," Carson said, "so the specific nature of the storm when it hits an area is likely to matter. [But] our results suggest that, on average, there is no difference."

The team published these results in Proceedings of the National Academy of Sciences of the United States of America on March 3.

Wetlands at Risk

Most areas that have experienced storm-related property damage in the past 20 years have also lost wetland coverage, the researchers found. They calculated that Floridians would have been spared $480 million in property damage from Hurricane Irma alone had the state's wetland coverage not shrunk by 2.8% in the decade prior.

Moreover, recent changes to the Clean Water Act have made the remaining coastal wetlands more vulnerable.

"The federal government, with respect to the U.S. Clean Water Act, took the position that the previous wetland studies were not reliable enough for use in assessing the benefits and cost of protecting wetlands," Carson said.

"The value coastal wetlands provide for storm protection is substantial and should be taken into account as policy makers debate the Clean Water Act," Sun said. "It's also worth noting," she added, "that storm protection for property is just one of many ecological services that wetlands provide. We hope our study will spur future research quantifying these other services as well."

With tropical storms and hurricanes expected to happen more often because of climate change, the team wrote, wetlands will be more economically valuable than ever.

Reposted with permission from The Revelator.

EcoWatch Daily Newsletter

A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less
Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.

An illustration depicts the extinct woolly rhino. Heinrich Harder / Wikimedia Commons

The last Ice Age eliminated some giant mammals, like the woolly rhino. Conventional thinking initially attributed their extinction to hunting. While overhunting may have contributed, a new study pinpointed a different reason for the woolly rhinos' extinction: climate change.

The last of the woolly rhinos went extinct in Siberia nearly 14,000 years ago, just when the Earth's climate began changing from its frozen conditions to something warmer, wetter and less favorable to the large land mammal. DNA tests conducted by scientists on 14 well-preserved rhinos point to rapid warming as the culprit, CNN reported.

"Humans are well known to alter their environment and so the assumption is that if it was a large animal it would have been useful to people as food and that must have caused its demise," says Edana Lord, a graduate student at the Center for Paleogenetics in Stockholm, Sweden, and co-first author of the paper, Smithsonian Magazine reported. "But our findings highlight the role of rapid climate change in the woolly rhino's extinction."

The study, published in Current Biology, notes that the rhino population stayed fairly consistent for tens of thousands of years until 18,500 years ago. That means that people and rhinos lived together in Northern Siberia for roughly 13,000 years before rhinos went extinct, Science News reported.

The findings are an ominous harbinger for large species during the current climate crisis. As EcoWatch reported, nearly 1,000 species are expected to go extinct within the next 100 years due to their inability to adapt to a rapidly changing climate. Tigers, eagles and rhinos are especially vulnerable.

The difference between now and the phenomenon 14,000 years ago is that human activity is directly responsible for the current climate crisis.

To figure out the cause of the woolly rhinos' extinction, scientists examined DNA from different rhinos across Siberia. The tissue, bone and hair samples allowed them to deduce the population size and diversity for tens of thousands of years prior to extinction, CNN reported.

Researchers spent years exploring the Siberian permafrost to find enough samples. Then they had to look for pristine genetic material, Smithsonian Magazine reported.

It turns out the wooly rhinos actually thrived as they lived alongside humans.

"It was initially thought that humans appeared in northeastern Siberia fourteen or fifteen thousand years ago, around when the woolly rhinoceros went extinct. But recently, there have been several discoveries of much older human occupation sites, the most famous of which is around thirty thousand years old," senior author Love Dalén, a professor of evolutionary genetics at the Center for Paleogenetics, said in a press release.

"This paper shows that woolly rhino coexisted with people for millennia without any significant impact on their population," Grant Zazula, a paleontologist for Canada's Yukon territory and Simon Fraser University who was not involved in the research, told Smithsonian Magazine. "Then all of a sudden the climate changed and they went extinct."

A large patch of leaked oil and the vessel MV Wakashio near Blue Bay Marine Park off the coast of southeast Mauritius on Aug. 6, 2020. AFP via Getty Images

The environmental disaster that Mauritius is facing is starting to appear as its pristine waters turn black, its fish wash up dead, and its sea birds are unable to take flight, as they are limp under the weight of the fuel covering them. For all the damage to the centuries-old coral that surrounds the tiny island nation in the Indian Ocean, scientists are realizing that the damage could have been much worse and there are broad lessons for the shipping industry, according to Al Jazeera.

Read More Show Less

Trending

A quality engineer examines new solar panels in a factory. alvarez / Getty Images

Transitioning to renewable energy can help reduce global warming, and Jennie Stephens of Northeastern University says it can also drive social change.

For example, she says that locally owned businesses can lead the local clean energy economy and create new jobs in underserved communities.

"We really need to think about … connecting climate and energy with other issues that people wake up every day really worried about," she says, "whether it be jobs, housing, transportation, health and well-being."

To maximize that potential, she says the energy sector must have more women and people of color in positions of influence. Research shows that leadership in the solar industry, for example, is currently dominated by white men.

"I think that a more inclusive, diverse leadership is essential to be able to effectively make these connections," Stephens says. "Diversity is not just about who people are and their identity, but the ideas and the priorities and the approaches and the lens that they bring to the world."

So she says by elevating diverse voices, organizations can better connect the climate benefits of clean energy with social and economic transformation.

Reposted with permission from Yale Climate Connections.