Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Chance of 40 Degree Celsius Days in UK ‘Rapidly Increasing’ Due to Climate Crisis

Climate
Chance of 40 Degree Celsius Days in UK ‘Rapidly Increasing’ Due to Climate Crisis
People relax in Victoria Gardens with the Houses of Parliament in the background in central London, as a heatwave hit the continent with temperatures touching 40 degrees Celsius on June 25, 2020. NIKLAS HALLE'N / AFP via Getty Images

The chance that UK summer days could hit the 40 degree Celsius mark on the thermometer is on the rise, a new study from the country's Met Office Hadley Centre has found.


British summers currently only reach 40 degrees every 100 to 300 years. But the study, published in Nature Communications Tuesday, found that such temperatures could occur every 3.5 years if nothing is done to reduce greenhouse gas emissions and curb the climate crisis.

"Climate change has already influenced the likelihood of temperature extremes in the UK. The chances of seeing 40°C days in the UK could be as much as 10 times more likely in the current climate than under a natural climate unaffected by human influence," lead author Dr. Nikolaos Christidis said in a Met Office press release. "The likelihood of exceeding 40°C anywhere in the UK in a given year has also been rapidly increasing, and, without curbing of greenhouse gas emissions, such extremes could be taking place every few years in the climate of 2100."

To reach their conclusions, the researchers combined temperature measurements across the country with 16 different climate models, The Guardian explained. They found that reducing emissions made a big difference in lowering future temperatures. Under a medium-emissions scenario, in which emissions are reduced but not enough to honor the Paris agreement goal of limiting global warming to below two degrees, 40 degree days would occur every 15 years.

"This research shows human-caused climate change has set us on a course to see temperature extremes in the UK that would be highly unlikely under a 'natural' climate, although urgent action to reduce emissions now can significantly reduce the occurrence of extreme high temperatures in the UK in the future," coauthor and head of the Met Office National Climate Information Centre Dr. Mark McCarthy said in the press release.

The study also looked at the likelihood of other temperature extremes. Days 35 degrees or higher currently occur every five years on average but could happen nearly every other year by 2100 under a high-emissions scenario. The 40 and 35 degree days would be most common in the Southeast, but the North could see 30 degree days once per decade by 2100. They are now extremely rare in that region.

UK summers are already feeling the impacts of the climate crisis. The summer of 2018 was the joint hottest on record, and the country saw its highest recorded temperature of 38.7 in Cambridge during July 2019, The Guardian reported. The climate crisis has made heat waves in the country 30 more likely, and temperature extremes caused 3,400 early deaths between 2016 and 2019. These impacts will only worsen as temperatures rise, which is a big reason why the Met Office conducted the study, Christidis told AFP. He said he wanted to help the country plan better for extremes.

"Exceeding extreme temperature thresholds like the 40C in the UK would be accompanied by severe impacts — on public health, transport infrastructure," he told AFP.

However, on a global scale, the UK won't be feeling the heat as intensely as other places.

"Heatwaves are a real risk to life in the UK, especially if we do not begin modifying our homes, workplaces and hospitals to manage their expected overheating," University of Leeds professor Piers Forster, who was not involved in the study, told The Guardian. "However, we should note that in terms of heatwaves, the UK will get off lightly compared with most other nations. Heatwaves in the major crop-growing regions of the world could have more profound effects, both globally and for the UK."

EcoWatch Daily Newsletter

A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less
Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.

An illustration depicts the extinct woolly rhino. Heinrich Harder / Wikimedia Commons

The last Ice Age eliminated some giant mammals, like the woolly rhino. Conventional thinking initially attributed their extinction to hunting. While overhunting may have contributed, a new study pinpointed a different reason for the woolly rhinos' extinction: climate change.

The last of the woolly rhinos went extinct in Siberia nearly 14,000 years ago, just when the Earth's climate began changing from its frozen conditions to something warmer, wetter and less favorable to the large land mammal. DNA tests conducted by scientists on 14 well-preserved rhinos point to rapid warming as the culprit, CNN reported.

"Humans are well known to alter their environment and so the assumption is that if it was a large animal it would have been useful to people as food and that must have caused its demise," says Edana Lord, a graduate student at the Center for Paleogenetics in Stockholm, Sweden, and co-first author of the paper, Smithsonian Magazine reported. "But our findings highlight the role of rapid climate change in the woolly rhino's extinction."

The study, published in Current Biology, notes that the rhino population stayed fairly consistent for tens of thousands of years until 18,500 years ago. That means that people and rhinos lived together in Northern Siberia for roughly 13,000 years before rhinos went extinct, Science News reported.

The findings are an ominous harbinger for large species during the current climate crisis. As EcoWatch reported, nearly 1,000 species are expected to go extinct within the next 100 years due to their inability to adapt to a rapidly changing climate. Tigers, eagles and rhinos are especially vulnerable.

The difference between now and the phenomenon 14,000 years ago is that human activity is directly responsible for the current climate crisis.

To figure out the cause of the woolly rhinos' extinction, scientists examined DNA from different rhinos across Siberia. The tissue, bone and hair samples allowed them to deduce the population size and diversity for tens of thousands of years prior to extinction, CNN reported.

Researchers spent years exploring the Siberian permafrost to find enough samples. Then they had to look for pristine genetic material, Smithsonian Magazine reported.

It turns out the wooly rhinos actually thrived as they lived alongside humans.

"It was initially thought that humans appeared in northeastern Siberia fourteen or fifteen thousand years ago, around when the woolly rhinoceros went extinct. But recently, there have been several discoveries of much older human occupation sites, the most famous of which is around thirty thousand years old," senior author Love Dalén, a professor of evolutionary genetics at the Center for Paleogenetics, said in a press release.

"This paper shows that woolly rhino coexisted with people for millennia without any significant impact on their population," Grant Zazula, a paleontologist for Canada's Yukon territory and Simon Fraser University who was not involved in the research, told Smithsonian Magazine. "Then all of a sudden the climate changed and they went extinct."

A large patch of leaked oil and the vessel MV Wakashio near Blue Bay Marine Park off the coast of southeast Mauritius on Aug. 6, 2020. AFP via Getty Images

The environmental disaster that Mauritius is facing is starting to appear as its pristine waters turn black, its fish wash up dead, and its sea birds are unable to take flight, as they are limp under the weight of the fuel covering them. For all the damage to the centuries-old coral that surrounds the tiny island nation in the Indian Ocean, scientists are realizing that the damage could have been much worse and there are broad lessons for the shipping industry, according to Al Jazeera.

Read More Show Less

Trending

A quality engineer examines new solar panels in a factory. alvarez / Getty Images

Transitioning to renewable energy can help reduce global warming, and Jennie Stephens of Northeastern University says it can also drive social change.

For example, she says that locally owned businesses can lead the local clean energy economy and create new jobs in underserved communities.

"We really need to think about … connecting climate and energy with other issues that people wake up every day really worried about," she says, "whether it be jobs, housing, transportation, health and well-being."

To maximize that potential, she says the energy sector must have more women and people of color in positions of influence. Research shows that leadership in the solar industry, for example, is currently dominated by white men.

"I think that a more inclusive, diverse leadership is essential to be able to effectively make these connections," Stephens says. "Diversity is not just about who people are and their identity, but the ideas and the priorities and the approaches and the lens that they bring to the world."

So she says by elevating diverse voices, organizations can better connect the climate benefits of clean energy with social and economic transformation.

Reposted with permission from Yale Climate Connections.