EcoWatch is a community of experts publishing quality, science-based content on environmental issues, causes, and solutions for a healthier planet and life.
Three hydro-fracking derricks sitting on a plain in Wyoming. Jens Lambert / Shutterstock.com

The Energy Information Administration (EIA) of the U.S. Department of Energy has just released its Annual Energy Outlook (AEO) 2018, with forecasts for American oil, gas and other forms of energy production through mid-century. As usual, energy journalists and policy makers will probably take the document as gospel.

That's despite the fact that past AEO reports have regularly delivered forecasts that were seriously flawed, as the EIA itself has acknowledged. Further, there are analysts inside and outside the oil and gas industry who crunch the same data the EIA does, but arrive at very different conclusions.

Read More Show Less
EcoWatch Daily Newsletter

Our core ecological problem is not climate change. It is overshoot, of which global warming is a symptom. Overshoot is a systemic issue. Over the past century-and-a-half, enormous amounts of cheap energy from fossil fuels enabled the rapid growth of resource extraction, manufacturing and consumption; and these in turn led to population increase, pollution and loss of natural habitat and hence biodiversity.

The human system expanded dramatically, overshooting Earth's long-term carrying capacity for humans while upsetting the ecological systems we depend on for our survival. Until we understand and address this systemic imbalance, symptomatic treatment (doing what we can to reverse pollution dilemmas like climate change, trying to save threatened species and hoping to feed a burgeoning population with genetically modified crops) will constitute an endlessly frustrating round of stopgap measures that are ultimately destined to fail.

Read More Show Less
Chiradech / iStock / Getty Images

Portable generators allow you to power your devices and certain appliances, even away from home or when your primary power source is taken offline. These devices are also perfect for camping or outdoor adventures. A portable solar generator can give you the power you need with a smaller ecological footprint by using solar panels. In this article, we'll outline some of the top options available in 2021.

Read More Show Less

Not since the Civil War has an American presidential Inauguration Day been so fraught with fear and dread (on Feb. 23, 1861, Abraham Lincoln traveled to his inauguration under military guard, arriving in Washington, DC, in disguise). The incoming president is the most unpopular of any to assume office since modern polling began. In a single news cycle this past week he managed to alienate allies throughout an entire continent (Europe) during a brief break in a string of petulant tweets intended to persuade his own nation that Saturday Night Live is "not funny ... really bad television!"

Much has been made of the new president's personality and psyche—his narcissism, his germophobia, his irritability, his minimal sleeping habits and his reported inability to laugh (though he does smile). In my view, the most revealing personal characteristic of president #45 may be his complete disconnection from the natural world. Here is an individual who grew up in a city, who sees land only in terms of profit potential, who proudly covers the tortured ground with high-rise buildings, who lives in a penthouse and who walks outdoors only on golf courses. One could make some similar comments about many of his recent predecessors (certainly not Teddy Roosevelt), but in this instance the tendency reaches an extreme.

How can a person so isolated from natural phenomena hope to understand the vulnerability of our planet's climate, water, air and innumerable species to the actions of people (one hastens to add—people much like himself)? How can he appreciate that civilization itself is an organism with a constant need for "food" (not just grain and meat, but energy, minerals and water as well), that is organized by way of hierarchically ordered and interlinked cycles and that is subject to natural limits and ultimately to death?

One could argue that all hubris is tied to human beings' illusion of dominance over nature. Our long withdrawal from wildness surely started with language, which gave us the ability to name and categorize and thus to psychically control and distance ourselves from what we named; it erupted into alienation with the advent of agriculture, cities and most recently fossil fuels. But we never stopped depending on the fabric of life in which we have always been entwined. Even as we unravel the ecosphere's delicate fibers, we draw upon eons of accumulated soil nutrients and minerals, fresh water and biodiversity.

Life implies death—one's own mortality above all. Everything has limits. Wisdom resides in the understanding that we are subject to forces we cannot control and that we must respect and accommodate ourselves to those forces. If we want to have language, farming, cities and energy, then we must make a deliberate cultural effort to maintain an attitude of individual and collective humility. In practical terms, that means keeping the size of our global population low enough so that it can be supported long-term without eroding natural systems, managing consumption so that resources are not depleted and non-biodegradable wastes do not accumulate and maintaining checks on wealth inequality.

How many Earths does it take? Productive global hectares (gha) per capita required for the current world population. Global Footprint Network

Obviously, we haven't been doing these things very well, especially in recent decades. The power of fossil fuels fed our collective megalomania. Like people in previous civilizations, we went out on a limb—but modern energy and technology enabled us to go much further than any humans had before. Still, as all civilizations do, ours has reached the point of diminishing returns, of over-reach. Before us lies the senescence and death of a way of living and of seeing the world. Perhaps the new president's qualities of character are emblematic of these final stages of cultural disintegration.

In the days to come, there will be plenty of opportunities for resistance, protest and, one hopes, celebration. Inauguration Day 2017 is a turning point; for me, it seems a perfect occasion for a walk in the woods.

Richard Heinberg
Insights Writers

The New York Times reports that “The United States and Europe kicked off a joint effort on Tuesday intended to curb Russia’s long-term ability to develop new oil resources.” The new sanctions would deny Russia access to western technology needed to access polar oil and deepwater oil, as well as tight oil produced by hydrofracturing and horizontal drilling.

Evidently the purpose of the sanctions is merely to punish Vladimir Putin for resisting Western attempts to surround his nation with NATO bases and missiles. Frederic Legrand / Shutterstock.com


It's good to know that a lot of Russian oil is likely to stay in the ground rather than being burned in Russian, Chinese and European car and truck engines, adding to global climate change. But that's not really the intent of the sanctions; evidently the purpose is merely to punish Vladimir Putin for resisting Western attempts to surround his nation with NATO bases and missiles. For some reason intelligible only to neoconservatives, nuclear-armed Washington seems intent on provoking a major confrontation with nuclear-armed Russia.As justification, we Americans are told in no uncertain terms that Russia was behind the downing of Malaysian Airlines flight 17—despite a remarkable lack of actual evidence to that effect (as veteran journalist Robert Parry points out).


The foreign policy wonks at the State Department may not understand that Russian oil production has just hit a post-USSR peak and will be declining anyway. The effect of the sanctions will be to speed the Russian decline, forcing up world oil prices as soon as U.S. tight oil maxes out and goes into its inevitable nosedive in the 2017-2020 time frame. Russia, which will still be an oil exporter then, will benefit from higher oil prices (perhaps nearly enough to compensate for the loss of production resulting from the sanctions). But the U.S., which will still be one of the world’s top oil importers, will face a re-run of the 2008 oil shock that contributed to its financial crash.


No doubt State Department policy experts sincerely believe the recent hype about America as a new energy superpower capable of supplying Europe with oil and natural gas to replace Russia’s exports. Maybe the Europeans are foolish enough to have fallen for this delusion as well. But these will prove to be ruinous high-stakes bets. One can only hope that all the players will stir from these hallucinations before the game turns really ugly.


History is often made by strong personalities wielding bold new political, economic or religious doctrines. Yet any serious effort to understand how and why societies change requires examination not just of leaders and ideas, but also of environmental circumstances. The ecological context (climate, weather and the presence or absence of water, good soil and other resources) may either present or foreclose opportunities for those wanting to shake up the social world. This suggests that if you want to change society—or are interested in aiding or evaluating the efforts of others to do so—some understanding of exactly how environmental circumstances affect such efforts could be extremely helpful.

Do you want to change the world? More power to you. Start by identifying your core values—fairness, peace, stability, beauty, resilience, whatever.
Photo courtesy of Shutterstock

Perhaps the most important key to grasping the relationship between the environment and processes of societal change was articulated by American anthropologist Marvin Harris (1927-2001). From the very beginning of efforts to systematically study human societies in the eighteenth and nineteenth centuries, it had been clear that there were strong correlations between how societies obtain their food (whether by hunting and gathering, horticulture, agriculture, animal herding, or fishing), and their social structures and beliefs about the world. Hunter-gatherers typically live in small peripatetic bands, have an egalitarian social structure, and regard the natural world as full of supernatural powers and personalities that can be contacted or influenced by shamans. Farmers, on the other hand, stay in one place and produce seasonal surpluses that often end up subsidizing the formation of towns as well as classes of full-time specialists in various activities (metal-working, statecraft, soldiery, banking, record-keeping and so on); agricultural societies also tend to develop formalized religions presided over by a full-time, hierarchical priestly class. These systemic distinctions and similarities have held true on different continents and throughout centuries. Harris showed how shifts from one kind of food system to another were driven by environmental opportunity and necessity, and he refined his insights into an anthropological research strategy. [1]

Marvin Harris’s magnum opus was the rather difficult book Cultural Materialism: The Struggle for a Science of Culture (1979). While he was perfectly capable of writing for the general public—others of his titles, like Cows, Pigs, Wars and Witches (1974), and Cannibals and Kings (1977) were best-sellers—in Cultural Materialism, Harris was writing for fellow anthropologists. The book is full of technical jargon, and its author argues each point meticulously, presenting a surfeit of evidence. However, the kernel of Harris’s theoretical contribution can be summarized rather briefly.

All human societies consist of three interrelated spheres: first, the infrastructure,which comprises a society’s relations to its environment, including its modes of production and reproduction—think of this primarily as its ways of getting food, energy, and materials; second, the structure, which comprises a society’s economic, political, and social relations; and third, the superstructure, which consists of a society’s symbolic and ideational aspects, including its religions, arts, rituals, sports and games and science. Inevitably, these three spheres overlap, but they are also distinct, and it is literally impossible to find a human society that does not feature all three in some permutation.

For social change advocates, it’s what comes next that should agitate the neurons. Harris’s “cultural materialism” [2] argues for the principle of what he calls “probabilistic infrastructural determinism.” That is to say, the structure and superstructure of societies are always contested to one degree or another. Battles over distribution of wealth and over ideas are perennial, and they can have important consequences: life in the former East Germany was very different from life in West Germany, even though both were industrial nations operating under (what started out to be) nearly identical ecological conditions. However, truly radical societal change tends to be associated with shifts of infrastructure. When the basic relationship between a society and its ecosystem alters, people must reconfigure their political systems, economies and ideology accordingly, even if they were perfectly happy with the previous state of affairs.

Societies change their infrastructure out of necessity (for example, due to depletion of resources) or opportunity (usually the increased availability of resources, made available perhaps by migration to new territory or by the adoption of a new technology). The Agricultural Revolution 10,000 years ago represented a massive infrastructural shift, and the fossil-fueled Industrial Revolution 200 years ago had even greater and far more rapid impact. In both cases, population levels grew, political and economic relations evolved, and ideas about the world mutated profoundly.

Explaining the former example in a bit more detail may help illustrate the concept. Harris was an early adopter of the now-common view of the Agricultural Revolution as an adaptive response to environmental shifts at the end of the Pleistocene, a period of dramatic climate change. Glaciers were receding and species (especially big herbivorous prey animals such as mammoths and mastodons) faced extinction, with human predation hurrying that extinction process along. “In all centers of early agricultural activity,” writes Harris, “the end of the Pleistocene saw a notable broadening of the subsistence base to include more small mammals, reptiles, birds, mollusks and insects. Such ‘broad spectrum’ systems were a symptom of hard times. As the labor costs of the hunter-gatherer subsistence systems rose, and as the benefits fell, alternative sedentary modes of production became more attractive.”

Lifestyles based on cultivation took root and spread, and with them (eventually) came villages and chiefdoms. In certain places, the latter in turn mutated to produce the most radical social invention of all, the state.

The paleotechnic infrastructures most amendable to intensification, redistribution, and the expansion of managerial functions were those based on the grain and ruminant complexes of the Near and Middle East, southern Europe, northern China, and northern India. Unfortunately these were precisely the first systems to cross the threshold into statehood, and they therefore have never been directly observed by historians or ethnologists. Nonetheless, from the archaeological evidence of storehouses, monumental architecture, temples, high mounds and tells, defensive moats, walls, towers and the growth of irrigation systems, it is clear that managerial activities similar to those observed among surviving pre-state chiefdoms underwent rapid expansion in these critical regions immediately prior to the appearance of the state. Furthermore, there is abundant evidence from Roman encounters with “barbarians” in northern Europe, from Hebraic and Indian scriptures, and from Norse, Germanic and Celtic sagas that intensifier-redistributor-warriors and their priestly retainers constituted the nuclei of the first ruling classes in the Old World.

While I have omitted most of Harris’s detailed explanation, nevertheless we have here, in essence, an ecological explanation for the origin of civilization. What’s more, Harris is not merely proposing an entertaining “just-so” story, but a scientific hypothesis that is testable within the limits of available evidence.

Cultural materialism is capable of illuminating not just grand societal shifts, such as the origin of agriculture or the state, but the deeper functions of cultural institutions and practices of many sorts. Harris’s excellent textbook Cultural Anthropology (2000, 2007), co-authored with Orna Johnson,includes chapters with titles such as “Reproduction,” “Economic Organization,” “Domestic Life,” and “Class and Caste”; each features illustrative sidebars showing how a relevant cultural practice (peacemaking among the Mehinacu of central Brazil, polyandry among the Nyimba of Nepal) is adaptive to environmental necessity. Throughout this and all his books, indeed throughout his entire career, Harris aimed to show that probabilistic infrastructural determinism is the only sound basis for a true “science of culture” that is capable of producing testable hypotheses to explain why societies evolve the way they do.


Why is this important now? For the simple reason that our own society is on the cusp of an enormous infrastructural transformation. Which is remarkable, because we’re still reeling from the previous one, which began just a couple of centuries ago. The fossil-fueled Industrial Revolution entailed a shift from reliance on mostly renewable energy sources—firewood, field crops, some water power, wind for sails and animal muscle for traction—to cheaper, more controllable, more energy dense, and (in the case of oil) more portable non-renewable sources.

Oil has given us the ability to dramatically increase the rate at which we extract and transform Earth’s bounty (via mining machinery, tractors and powered fishing boats), as well as the ability to transport people and materials at high speed and at little cost. It and the other fossil fuels have also served as feedstocks for greatly expanded chemicals and pharmaceuticals industries, and have enabled a dramatic intensification of agricultural production while reducing the need for field labor. The results of fossil-fueling our infrastructure have included rapid population growth, the ballooning of the middle class, unprecedented levels of urbanization and the construction of a consumer economy. While elements of the Scientific Revolution were in place a couple of centuries prior to our adoption of fossil fuels, cheap fossil energy supplied a means of vastly expanding scientific research and applying it to the development of a broad range of technologies that are themselves directly or indirectly fossil-fueled. With heightened mobility, immigration increased greatly, and the democratic multi-ethnic nation state became the era’s emblematic political institution. As economies expanded almost continually due to the abundant availability of high-quality energy, neoliberal economic theory emerged as the world’s primary ideology of societal management. It soon evolved to incorporate several unchallenged though logically unsupportable notions, including the belief that economies can grow forever and the assumption that the entire natural world is merely a subset of the human economy.

Now, however, our still-new infrastructural regime based on fossil fuels is already showing signs of winding down. There are two main reasons. One is climate change: carbon dioxide, produced in the burning of fossil fuels, is creating a greenhouse effect that is warming the planet. The consequences will be somewhere between severe and cataclysmic. If we continue burning fossil fuels, we’re more likely to see a cataclysmic result, which could make continuation of industrial agriculture, and perhaps civilization itself, problematic. We do have the option to dramatically curtail fossil fuel consumption in order to avert catastrophic climate change. Either way, however, our current infrastructure will be a casualty.

The second big reason our fossil fuel-based infrastructure is endangered has to do with depletion. We’re not running out of coal, oil, or natural gas in the absolute sense, but we have extracted these non-renewable resources using the best-first, or low-hanging fruit, principle. With oil, the most strategically important of the fossil fuels (because of its centrality to transportation systems), we have already reached the point of diminishing returns. Compared to a decade ago, the global petroleum industry has more than doubled its rate of investment in exploration and production, while actual rates of global crude oil production have flat-lined. Costs of production are rising, and drillers are targeting geological formations that were formerly considered too problematic to bother with. With oil, the fate of the world’s economy appears to hang on the outcome of a race between technology and depletion: while industry spokespeople and media pundits tend to cheer new technology such as hydraulic fracturing, persistently high oil prices and soaring production costs suggest that depletion is in fact pulling ahead. Similar diminishing-returns limits with coal and natural gas production will likely be encountered within the next decade, both in the U.S. and the world as a whole.

At a bare minimum, climate change and fossil fuel depletion will force society to change to different energy sources, giving up reliance on energy-dense and controllable coal, oil and gas in favor of more diffuse and intermittent renewable sources like wind and solar. This in itself is likely to have enormous societal implications. While electric passenger cars running on power supplied by wind turbines and solar panels are feasible, electric airliners, container ships and 18-wheel trucks are not. Distributed electricity generation from renewables, together with a decline in global shipping and air transport, may favor less globalized and more localized patterns of economic and political organization.

However, we must also consider the strong likelihood that our looming, inevitable shift away from fossil fuels will entail a substantial reduction in the amount of useful energy available to society. Wind and sunlight are abundant and free, but the technology used to capture energy from these ambient sources is made from nonrenewable minerals and metals. The mining, manufacturing and transport activities necessary for the production and installation of wind turbines and solar panels currently require oil. It may theoretically be possible to replace oil with electricity from renewables in at least some of these processes, but for the foreseeable future wind and solar technologies can best be thought of as fossil fuel extenders.

Nuclear power, with its unbreakable reliance on mining and transport, is likewise a fossil fuel extender—but a far more dangerous one, given unsolved problems with accidents, nuclear proliferation, and waste storage. When the construction and decommissioning of power plants, and the mining and processing of uranium are all taken into account, nuclear power also offers a relatively low energy return on the energy invested (EROEI) in producing it.

Relatively low energy returns-on-investment from both nuclear and renewable energy sources may themselves result in societal change. The EROEI of fossil fuels was extremely high in comparison with that of energy sources previously available. This was a major factor in reducing the need for agricultural field labor, which in turn drove urbanization and the growth of the middle class. Some renewable sources of energy offer a better EROEI than firewood or agricultural crops, but none can compare with coal, oil and gas in their heyday. This suggests that the social consequences of the end of cheap fossil energy may include a partial re-ruralization of society and a shrinking of the middle class (the latter process is already beginning in the U.S.).

With less useful energy available, the global economy will fail to grow, and will likely enter a sustained period of contraction. Increased energy efficiency may cushion the impact but cannot avert it. With economies no longer growing, our current globally dominant neoliberal political-economic ideology may increasingly be called into question and eventually overthrown.

While energy is key to society’s infrastructure, other factors require consideration as well. Fossil fuels are depleting, but so are a host of additional important resources, including metals, minerals, topsoil and water. So far, we have made up for depletion in these cases by investing more energy in mining lower grade ores, by replacing soil nutrients with commercial fertilizers (many made from fossil fuels), and by transporting water, food and other goods from places of local abundance to regions in which those materials are scarce. This strategy has increased the human carrying capacity of our planet, but it is a strategy that may not work much longer as energy itself becomes scarcer.

Further alterations in the links between the environment and society will arise from climate change. Even assuming that nations undertake dramatic reductions in carbon emissions soon, cumulative past emissions virtually guarantee continued and increasing impacts that will include rising sea levels and worsening droughts and floods. By mid-century, hundreds of millions of climate refugees may be in search of secure habitat.

There are optimistic ways of viewing the future, based on assumptions that fossil fuels are in fact abundant and will last another century or more, that new nuclear power technologies will be more viable than current ones, that renewable energy sources can be scaled up quickly, and that likely impacts of climate change have been overestimated. Even if one or more of these assumptions turns out to be correct, however, the evidence of declining returns on energy and financial investments in oil extraction cannot be disregarded. An infrastructure shift is underway.

Considering oil’s role in industrial agriculture, this shift will undoubtedly and profoundly impact our food system—and food (which is our most basic energy source, from a biological perspective) is at the core of every society’s infrastructure. Whether or not optimistic assumptions are valid, we probably face an infrastructural transformation at least as significant as the Industrial Revolution.

But the error bars on energy supplies and climate sensitivity include more pessimistic possibilities. Once useful fossil energy supply rates begin to falter, this could trigger an unwinding of the global financial system as well as international conflict. It is also possible that the relationship between carbon emissions and atmospheric temperatures is non-linear, with Earth’s climate system subject to self-reinforcing feedbacks that could result in a massive die-off of species, our own included.

Choose your assumptions—optimistic, pessimistic, or somewhere in between. In any case, this is a big deal.


We are living at a historic moment when the structure of society (economic and political systems) and its superstructure (ideologies) are about to be challenged perhaps as never before. When infrastructure changes, what seemingly was solid melts into air, paradigms fall, and institutions crumble, until a new societal regime emerges. Think of a caterpillar pupating, its organ systems evidently being reduced to undifferentiated protoplasm before reorganizing themselves into the features of a butterfly. What a perfect opportunity for an idealist intent on changing the world!

Indeed, fault lines are already appearing throughout society. From a cultural materialist point of view, the most important of these relate to how the inevitable infrastructure change will occur. Proponents of distributed renewable energy sources are the underdogs, and the defenders of centralized, fossil energy systems the incumbents in deepening disputes over subsidies and other elements of government energy policy. Meanwhile, grassroots opposition to extreme fossil fuel extraction methods is springing up everywhere that companies are fracking for oil and gas, drilling in deepwater, mining tar sands, or blasting mountaintops to mine coal. Opposition to an oil pipeline is fueling one of the hottest political fires in Washington D.C. And concern about climate change has acquired an intergenerational dimension, as young people across America sue state governments and federal agencies for failing to develop climate action plans. Young people, after all, are the ones who will most forcibly face the consequences of climate change, and their attitude toward older generations may not be forgiving.

We are also seeing increasing conflict over the structure of society—its systems of economic distribution and political decision-making. As economic growth grinds to a halt, the world’s wealthy investor class is seeking to guarantee its solvency and maintain its profits by shifting costs onto the general public via bailouts, austerity measures and quantitative easing (which lowers interest rates, flushing money out of savings accounts and into the stock market). Jobs downsize and wages fall, but the number of billionaires billows. However, rising economic inequality has its own political costs, as documented in Amazon’s recent best-selling book, a 700-page tome called Capital in the Twenty-First Century, which unfortunately fails to grasp the infrastructural shift that is upon us or its implications for economy and society. Polls show rising dissatisfaction with political leaders and parties throughout the West. But in most countries there is no organized opposition group poised to take advantage of this widespread discontent. Instead, political and economic institutions are themselves losing legitimacy.

Infrastructural tremors are also reverberating throughout international geopolitics. The world’s dominant superpower, which attained its status during the twentieth century at least partly because it was the home of the global oil industry, is now quickly losing diplomatic clout and military “credibility” as the result of a series of disastrous miscalculations and blunders, including its invasions and occupations of Afghanistan and Iraq. Coal-fueled China is just now becoming world’s largest economy, though it and other second-tier nations (UK, Germany, Russia) are themselves beset with intractable and growing economic contradictions, pollution dilemmas or resource limits.

Society’s superstructure is also subject to deepening rupture, with neoliberalism coming under increasing criticism, especially since 2008. However, there is a more subtle and pervasive (and therefore potentially even more potent) superstructure to modern society, one largely taken for granted and seldom named or discussed, and it is likewise under assault. Essayist John Michael Greer calls this “the civil religion of progress.” As Greer has written, the idea of progress has quietly become the central article of faith of the modern industrial world, more universally held than the doctrine of any organized religion. The notion that “history has a direction, and it has to make cumulative progress in that direction” has been common to both capitalist and communist societies during the past century. But what will happen to that “religious” conviction as the economy shrinks, technology fails, population declines and inventors fail to come up with ways of managing society’s multiplying crises? More to the point, how will billions of fragile human psyches adjust to seeing their most cherished creed battered repeatedly upon the shoals of reality? And what new faith will replace it? Greer suggests that it will be one that re-connects humanity with nature, though its exact form is yet to reveal itself.

All of these trends are in their very earliest phases. As infrastructure actually shifts—as fuels deplete, as weather extremes worsen—tiny cracks in the edifice of business-as-usual will become unbridgeable chasms.

* * *

Here’s my last big take-away message for would-be social changers: only ideas, demonstration projects and policy proposals that fit our emerging infrastructure will have genuine usefulness or staying power. How can you know if your idea fits the emerging infrastructure? There’s no hard and fast rule, but your idea stands a good chance if it assumes we are moving toward a societal regime with less energy and less transport (and that is therefore more localized); if it can work in a world where climate is changing and weather conditions are extreme and unpredictable; if it provides a way to sequester carbon rather than releasing more into the atmosphere; and if it helps people meet their basic needs during hard times.

It’s fairly easy to identify elements of our society’s existing structure and superstructure that won’t work with the infrastructure toward which we appear to be headed. Consumerism and corporatism are two big ones; these were twentieth century adaptations to cheap, abundant energy. They justifiably have been the objects of a great deal of activist opposition in recent decades. There were reforms or alternatives to consumerism and corporatism that could have worked within our industrial infrastructure regime (or that did work in some places, not others): European-style industrial socialism is the primary example, though that might be thought of as a magnetic hub for a host of idealistic proposals championed by thousands, maybe even millions of would-be world-changers. But industrial socialism is arguably just as thoroughly dependent on fossil-fueled infrastructure as corporatism and consumerism. To the extent that it is, activists who are married to an industrial-socialist vision of an ideal world may be wasting many of their efforts needlessly.

Historic examples offer useful ways of grounding social proposals. In the current context, it is important to remember that almost all of human history took place in a pre-industrial, “pre-progress” context, so it should be fairly easy to differentiate desirable from undesirable societal adaptations to analogous challenges in past eras. For example, anarchist philosopher and evolutionary biologist Peter Kropotkin, in his book Mutual Aid, praised medieval European cities as sites of autonomy and creativity—though the period during which they flourished is often thought of as a “dark age.”

There are plenty of activist projects underway now that appear thoroughly aligned with the post-fossil fuel infrastructure toward which we are headed, including Permaculture cooperatives, ecovillages, local food campaigns, and Transition Initiatives. Relevant new economic trends include the collaborative economy, the sharing economy, collaborative consumption, distributed production, P2P finance and the open source and open knowledge movements. While some of the latter merely constitute new business models that appear to spring from web-based technologies and social media, their attractiveness may partly derive from a broadly shared cultural sense that the centralized systems of production and consumption characteristic of the twentieth century are simply no longer viable, and must give way to more horizontal, distributed networks. The list of existing ideas and projects that could help society adapt in a post-fossil fuel era is long. Plenty of people have sensed the direction of global change and come to their own sensible conclusions about what to do, without any awareness of Harris’s cultural materialism. But such awareness could help at the margins by reducing wasted effort.

Do you want to change the world? More power to you. Start by identifying your core values—fairness, peace, stability, beauty, resilience, whatever. That’s up to you. Figure out what ideas, projects, proposals or policies further those values, but also fit with the infrastructure that’s almost certainly headed our way. Then get to work. There’s plenty to do, and lots at stake.

[1] The simple observation that human culture is adaptive to environmental conditions is revelatory: Jared Diamond (author of Guns, Germs and Steel) has based a career on it, though he consistently fails to credit Harris—who was earlier and more thorough. Harris himself was careful to cite predecessors upon whose work he was building, including Karl Marx.

[2] The term materialism is loaded with connotations that distract from the issues at hand. In Marvin Harris’s usage, the word refers merely to a way of thinking that assumes material effects are due to material causes. When I was teaching a college program on sustainability, I suggested to my students that they think of probabilistic infrastructural determinism as “cultural ecology.” I knew this was somewhat inaccurate, as cultural ecology is a school of anthropological thought closely related to, but distinct from, cultural materialism. However, many students simply couldn’t get past the word materialism: for them, this was an irremediably distasteful term associated both with the negation of spirituality and with the American mania for buying and consuming corporate products.


Richard Heinberg

Evolution can be ruthless at eliminating the unfit. “Red in tooth and claw,” as Tennyson memorably described it, Nature routinely sacrifices billions of individual organisms and sometimes entire species in the course of its adaptive progression.

We humans have been able to blunt Nature’s fangs. We take care of individuals who would not be able to survive on their own—the elderly, the sick, the wounded—and we’ve been doing so for a long time, perhaps tens of thousands of years. In recent decades more and more of us have leapt aboard the raft of societally ensured survival—though in ways that often have little to do with compassion: today even most hale and hearty individuals would be hard pressed to stay alive for more than a few days or weeks if cut adrift from supermarkets, ATMs and the rest of the infrastructure of modern industrialism.

This strategy of expanding our collective fitness has (at least temporarily) paid off: the consequent reduction in our death rate has resulted in a 700 percent expansion of human population in just the past two centuries, and a current population growth rate of about 80 million per year (births in excess of deaths). Humans are everywhere taking carrying capacity away from most other organisms, except ones that directly serve us such as maize and cattle. We have become expert at cooperatively avoiding nature’s culling, and thus at partially (and, again, temporarily) defeating natural selection—at least, in the way it applies to other species.

Some argue that “natural selection” is at work within human society whenever clever and hard-working folks get ahead while lazy dullards lag behind. The philosophy of Social Darwinism holds that this kind of competitive selection improves the species. But critics point out that individual success within society can be maladaptive for society as a whole because if wealth becomes too unequally distributed, social stability is threatened. Such concerns have led most nations to artificially limit competitive selection at the societal level: in the U.S., these limits take the forms of the progressive income tax, Social Security, food stamps, disability payments, Medicaid and Aid for Dependent Children, among others. Even most self-described “conservatives” who think that government shouldn’t prevent society’s winners from taking all still think it’s good for churches to give to the needy.

While the last few decades of rapid economic growth and material abundance—enabled by cheap fossil energy—led to a dramatic expansion of social safety nets in industrialized countries, they also featured the emergence of an ostensibly benign global imperial system led by the U.S., whose fearsome military machine kept a lid on international conflict and whose universally accepted currency helped maintain relative international economic stability (in ways that served U.S. interests, of course). Globally, deaths from war have declined, as has mortality linked to dire poverty.

So far, so good (more or less).

Unfortunately, however, many key components of our successful collective efforts to beat The Reaper are essentially unsustainable. We have reduced mortality not just with antibiotics (to which microbes eventually develop immunity), but also with an economic strategy of drawing down renewable resources at rates exceeding those of natural replenishment, and of liquidating non-renewable resources as quickly as possible. By borrowing simultaneously from the past (when fossil fuels were produced) and the future (when our grandchildren will have to clean up our mess, pay our debt and do without the resources we squander), we are effectively engaging in population overshoot. Every population ecologist knows that when a species temporarily overshoots its environment’s long-term carrying capacity, a die-off will follow.

And so, as the world economy stops growing and starts contracting during the next few years, the results will likely include a global increase in human mortality.

Resilience theorists would say we’re entering the “release” phase of the adaptive cycle that characterizes all systemic development, a phase described as “a rapid, chaotic period during which capitals (natural, human, social, built and financial) tend to be lost and novelty can succeed.” This is a notion to which we’ll return repeatedly throughout this essay, and it’s a useful way of conceptualizing an experience that, for those undergoing it, will probably feel a lot less like “release” than “pure hell.” Among the possible outcomes: Government-funded safety nets become unaffordable and are abandoned. Public infrastructure decays. Economic systems, transport systems, political systems, health care systems and food systems become inoperable to varying degrees and in a variety of ways. Global military hegemony becomes more difficult to maintain for a range of reasons (including political dysfunction and economic decline at the imperial core, scarcity of transport fuel and the proliferation of cheap but highly destabilizing new weapons) and international conflict becomes more likely. Any of those outcomes increases our individual vulnerability. Everyone on the raft is imperiled, especially those who are poor, old, sick or disabled.

We could redesign our economic, political, transport, health care and food systems to be less brittle. But suggestions along those lines have been on the table for years and have been largely rejected because they don’t serve the interests of powerful groups that benefit from the status quo. Meanwhile the American populace seems incapable of raising an alarm or responding to it, consisting as it does of a large under-class that is over-fed but under-nourished, over-entertained but misinformed, over-indebted and under-skilled; and a much smaller over-class that lives primarily by financial predation and is happy to tune out any evidence of the dire impacts of its activities.

A thoroughly unsentimental reader of the portents might regard an increase in the human death rate as an inevitable and potentially beneficial culling of the species. The unfit will be pruned away, the fit will survive and humanity will be the better for it. Eventually. In theory.

Or maybe the rich and ruthless will survive and everyone else will either perish or submit to slavery.

The greatest danger is that, if social support systems utterly fail, “overshoot” could turn to “undershoot”: that is, population levels could overcorrect to the point that there are fewer survivors than could have been maintained if adaptation had been undertaken proactively—perhaps far fewer than the population just prior to the Industrial Revolution. And for those who did manage to struggle on, levels of culture and technology might plummet to a depth far below what could have been preserved had action been taken.

We have a population bottleneck, as William Catton calls it, ahead of us no matter what we do at this point. Even if a spectacular new energy source were to appear tomorrow, it would do little more than buy us a bit of time. However, we still get to choose how to pass through that bottleneck. We can exert some influence on factors that will determine how many of us get through, and in what condition.

Cooperative or Competitive Adaptation

A worst-case scenario is likely to be averted only by an effective, cooperative effort to adapt to scarcity and to recover from crises.

Fortunately there are perfectly good reasons for assuming that collaborative action along these lines will in fact emerge. We are a supremely cooperative species, and even our earliest ancestors were dedicated communitarians. Other species, though often squabbling over food and potential mates, likewise engage in sharing and cooperative behavior. Members of one species sometimes even cooperate with or offer help to members of different species. Indeed, as evolutionary theorist Peter Kropotkin pointed out in his landmark 1902 book Mutual Aid, evolution is driven by cooperation as well as by competition.

More directly to the point: hard times can bring out the worst in people, but also the best. Rebecca Solnit argues in A Paradise Built in Hell (see this review in the New York Times) that people tend to cooperate, share and help out at least as much during periods of crisis as during times of plenty. A critic might suggest that Solnit stretches this argument too far, and that collapsing societies often feature soaring rates of crime and violence (see, for example, Argentina circa 2000); nevertheless, she supports her thesis with compelling examples.

Assuming we fail to prevent crisis but merely respond to it, we might nevertheless anticipate a range of possible futures, depending on whether we set ourselves up to compete or cooperate. At one end of the competitive-cooperative scenarios spectrum, the rich few become feudal lords while everybody else languishes in direst poverty. At the other end of that spectrum, communities of free individuals cohere to produce necessities and maximize their chances for collective prosperity. Back at the “competitive” end of the scale, there is hoarding of food and widespread famine, while at the “cooperative” extreme community permaculture gardens spring up everywhere. With more competition, people perish for lack of basic survival skills; with more collaboration, people share skills and care for those with disabilities of one kind or another. Competitive efforts by investors to maintain their advantages could lead to a general collapse of trust in financial institutions, culminating in the cessation of trade at almost every level; but with enough cooperation, people could create a non-growth-based monetary system that acts as a public utility, leading to a new communitarian economics.

It’s a Set-Up

In the real world, humans are both competitive and cooperative—always have been, always will be. But circumstances, conditioning and brain chemistry can tend to make us more competitive or more collaborative. As we pass through the population-resource-economy bottleneck in the decades ahead, competitive and cooperative behaviors will in turn come to the fore in various times and places. My initial point in all of this is that, even in the absence of effective action to avert economic and environmental crises, we still have the capacity to set ourselves up to be either more competitive or more cooperative in times of scarcity and crisis. With the right social structures and the right conditioning, whole societies can become either more cutthroat or more amiable. By building community organizations now, we are improving our survival prospects later.

But I’d go further. Here’s a preliminary hypothesis for which I’m starting to collect both confirming and dis-confirming evidence: We’re likely to see the worst of ruthless competition in the early stage of the release phase, when power holders try to keep together what wants to fall apart and reorganize. The effort to hang on to what we have in the face of uncertainty and fear may bring out the competitive nature in many of us, but once we’re in the midst of actual crisis we may be more likely to band together.

Among elites—who have enormous amounts of wealth, power and privilege at stake—the former tendency has carried the day. And since elites largely shape the rules, regulations and information flows within society as a whole, this means we’re all caught up in a hyper-competitive and fearful moment as we wait for the penny to drop. Elites can deliberately nurture an “us-versus-them” mentality (via jingoistic patriotism, wedge issues and racial resentments) to keep ordinary people from cooperating more to further their common interests. Revolution, after all, is in many respects a cooperative undertaking, and in order to forestall it rulers sometimes harness the cooperative spirit of the masses in going to war against a common foreign enemy.

The over-competitiveness of this pre-release-phase is playing out most prominently and fatefully in debates over “austerity,” as nations bail out investment banks while leaving most citizens to languish under lay-offs, pension cuts, and wage cuts. It seems that no measure aimed to prevent defaults and losses to investors is too draconian. But in many historic instances (Russia, Iceland, Argentina) it was only after a massive financial default occurred—that is, once release ran its course—that nations could fundamentally revamp their monetary and banking systems, making recovery possible. That makes “release” sound a bit like a long-overdue vacation. It’s important to emphasize, however, that what we face now is not just a collapse and reorganization of a national financial sector, but a crucial turning from the overall expansionary trajectory of civilization itself.

Our collective passage through and reorganization after the release phase of this pivotal adaptive cycle can be thought of as an evolutionary event. And, as noted above, evolution is driven by cooperation as much as by competition. Indeed, cooperation is the source of most of our species’ extraordinary accomplishments so far. Language—which gives us the ability to coordinate our behavior across space and time—has made us by far the most successful large animal species on the planet. Our societal evolution from hunting-and-gathering bands to agrarian civilizations to industrial globalism required ever-higher levels of cooperative behavior: as one small example, think for a moment about the stunningly rich collaborative action required to build and inhabit a skyscraper. As we adapt and evolve further in the decades and centuries ahead, we will do so by finding even more effective ways to cooperate.

Ironically, however, during the past few millennia, and especially during the most recent century, social complexity has permitted greater concentrations of wealth, thus more economic inequality, and hence (at least potentially) more competition for control over heaps of agglomerated wealth. As Ivan Illich pointed out in his 1974 classic Energy and Equity, there has been a general correlation between the amount of energy flowing through a society and the degree of inequality within that society. And so, as we have tapped fossil fuels to permit by far the highest energy flow rates ever sustained by any human civilization, a few individuals have accumulated the biggest pots of wealth the world has ever seen. Perhaps it should come as no surprise that it is precisely during this recent, aberrant, high-energy historic interval that Social Darwinism and neoliberal economics have arisen, with the latter coming to dominate economic and social policy worldwide.

The Leap

With release will come the opportunity for a collaborative evolutionary surge. Recall that in the release phase of the adaptive cycle there is expanded opportunity for novelty to succeed. Most people these days tend to think of novelty in purely technological terms, and it’s true that email and Twitter can speed social change—for example, by helping organize an instant political rally. But spending hours each day alone in front of a screen does not necessarily lead to collaborative behavior, and it’s just possible that we may not be able to count on our hand-held devices continuing to function in the context of global economic crisis, trade disruptions and resource shortages. Therefore perhaps it will be in our interactions within flesh-and-blood communities that our most decisive further innovations will arise.

The details are impossible to predict, but the general outline of our needed cooperative evolutionary leap is clear: we must develop a heightened collective ability to conserve natural resources while minimizing our human impacts on environmental systems. In some respects this might turn out to be little more than an updating of traditional societies’ methods of managing common grazing or hunting lands. But today the stakes are far higher: the commons must extend to include to all renewable and non-renewable resources, and “management” must bring extraction and harvest levels within the long-term ability of natural systems to recover and regenerate.

At the same time, with energy flows declining due to the depletion of fossil fuels, current levels of economic inequality will become unsupportable. Adaptation will require us to find ways of leveling the playing field peaceably.

Laying the groundwork for reorganization (following the release phase) will require building resilience into all our social structures and infrastructures. In the decades ahead, we must develop low-resource, low-energy ways of meeting human needs while nurturing an internalized imperative to keep population levels within ecosystems’ long-term carrying capacity.

There are those who say that we humans are too selfish and individualistic to make this kind of evolutionary leap, and that even if it were possible there’s simply too little time. If they’re right, then this may be the end of the line: we might soon wind up in the “unfit” bin of evolutionary history. But given our spectacular history of cooperative achievement so far, and given our ability to transform our collective behavior rapidly via language (aided, for the time being, with instantaneous communications technology), it stands to reason that our species has at least a fair chance of making the cut.

To be sure, evolution will be driven by crisis. We will adapt by necessity. In this release phase there will be vast potential for violence. Remember, release is the phase of the cycle in which capital is destroyed—and currently there are towering piles of human, built and financial capital waiting to topple. We have been set up to compete for shards and scraps. It’s no wonder that so many who sense the precariousness of our current situation have opted to become preppers and survivalists. But things will go a lot better for us if, rather than stocking up on guns and canned goods, we spend our time getting to know our neighbors, learning how to facilitate effective meetings or helping design resilient local food systems. Survival will depend on finding cooperative paths in which sacrifice is shared, the best of our collective achievements are preserved, and compassion is nurtured.

Darwin tells us we must evolve or die, and current circumstances bring that choice into stark relief. A lot of people evidently think that fitness and selfishness are the same. But we’ve gotten ourselves into our current fix not because we’re too good at cooperating to achieve collective fitness, but rather because, in our success, we failed to take account of the finite and fragile nature of the natural systems that support us. It’s true that individual initiative is important and that group-think can be stultifying. Yet it is our abilities to innovate socially and to cooperate in order to increase our collective fitness that have gotten us this far, and that will determine whether we survive, and under what conditions, as we adapt to scarcity and re-integrate ourselves within ecosystems in the decades ahead.