Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Modern Tomatoes Are Very Different From Their Wild Ancestors – and We Found Missing Links in Their Evolution

Food
The tomato's path from wild plant to household staple is much more complex than researchers have long thought. fcafotodigital / E+ / Getty Images

By Hamid Razifard and Ana Caicedo

The Big Idea: The tomato's path from wild plant to household staple is much more complex than researchers have long thought.


For many years, scientists believed that humans domesticated the tomato in two major phases. First, native people in South America cultivated blueberry-sized wild tomatoes about 7,000 years ago to breed a plant with a cherry-sized fruit. Later, people in Mesoamerica bred this intermediate group further to form the large cultivated tomatoes that we eat today.

But in a recent study, we show that the cherry-sized tomato likely originated in Ecuador around 80,000 years ago. No human groups were domesticating plants that long ago, so this implies that it started as a wild species, although people in Peru and Ecuador probably cultivated it later.

We also found that two subgroups from this intermediate group spread northward to Central America and Mexico, possibly as weedy companions to other crops. As this happened, their fruit traits changed radically. They came to look more like wild plants, with smaller fruits than their South American counterparts and higher levels of citric acid and beta carotene.

We were surprised to find that modern cultivated tomatoes seem most closely related to this wild-like tomato group, which is still found in Mexico, although farmers don't deliberately cultivate it.

Average fruit size in the cultivated tomato in comparison with its semi-domesticated and fully wild relatives. Hamid Razifard, CC BY-ND

Why it matters: This research has direct implications for crop improvement. For example, some intermediate tomato groups have high levels of glucose, which makes the fruit sweeter. Breeders could use those plants to make cultivated tomatoes more attractive to consumers.

We also saw signals that some varieties in this intermediate group had traits that promoted disease resistance and drought tolerance. Those plants could be used to breed hardier tomatoes.

What still isn't known: We don't know how the intermediate group of tomatoes spread from South America to Central America and Mexico. Birds may have eaten the fruits and excreted the seeds elsewhere, or humans may have cultivated or traded them.

Another question is why this intermediate group "regressed" and lost so many domestication traits once it spread north. Natural selection in new northern habitats may have actively favored tomatoes with more wild-like traits. It also could be that humans weren't breeding these plants and selecting for domestication traits, such as large fruits, which may require plants to use more energy than they would put into fruiting naturally.

How we do our work: We reconstruct tomato history by sequencing the genomes of wild, intermediate and domesticated tomato varieties. We also carry out population genomic analyses, in which we use models and statistics to deduce the changes that have occurred to tomatoes over time.

This work involves writing a lot of computer codes to analyze large amounts of data and look at patterns of variation in DNA sequences. We also work with other scientists to grow tomato samples and record data on many traits, such as fruit size, sugar content, acid content and flavor compounds.

What else is happening in the field: Feeding a growing human population will require improving crop yields and quality. To do this, scientists need to know more about plant genes that are involved in phenomena such as fruit development and flavor and disease resistance.

For example, research led by Zachary Lippman at the Cold Spring Harbor Laboratory in New York is using genome editing to manipulate traits that can help improve tomato yield. By tweaking genes native to two popular varieties of tomato plants, they have devised a rapid method to make the plants flower and produce ripe fruit more quickly. This means more plantings per growing season, which increases yield. It also means that the plant can be grown in latitudes more northerly than currently possible – an important attribute as the earth's climate warms.

What's next for you: Our research provides an atlas of candidates for future tomato gene function studies. We now can identify which genes were important at each stage of domestication history, and discover what they do. We also can search for beneficial alleles, or variants of specific genes, that may have been lost or diminished as the tomato was domesticated. We want to find out whether some of those lost variants could be used to improve growth and desirable traits in cultivated tomatoes.

Hamid Razifard is a postdoctoral researcher in biology at the University of Massachusetts Amherst.
Ana Caicedo is an associate professor of biology at the University of Massachusetts Amherst.

Disclosure statement: Hamid Razifard receives funding from National Science Foundation of USA. Ana Caicedo receives funding from the National Science Foundation (NSF) of the USA and the National Institute of Food and Agriculture (NIFA) of the USA.

Reposted with permission from The Conversation.

EcoWatch Daily Newsletter

By Samantha Hepburn

In the expansion of its iron ore mine in Western Pilbara, Rio Tinto blasted the Juukan Gorge 1 and 2 — Aboriginal rock shelters dating back 46,000 years. These sites had deep historical and cultural significance.

Read More Show Less
Meadow Lake wind farm in Indiana. Anthony / CC BY-ND 2.0

By Tara Lohan

The first official tallies are in: Coronavirus-related shutdowns helped slash daily global emissions of carbon dioxide by 14 percent in April. But the drop won't last, and experts estimate that annual emissions of the greenhouse gas are likely to fall only about 7 percent this year.

Read More Show Less
Andrey Nikitin / iStock / Getty Images Plus

By Adrienne Santos-Longhurst

Plants are awesome. They brighten up your space and give you a living thing you can talk to when there are no humans in sight.

Turns out, having enough of the right plants can also add moisture (aka humidify) indoor air, which can have a ton of health benefits.

Read More Show Less
A bald eagle chick inside a nest in Rutland, Massachusetts. Massachusetts Division of Fisheries and Wildlife
A bald eagle nest with eggs has been discovered in Cape Cod for the first time in 115 years, according to the Massachusetts Division of Fisheries and Wildlife (Mass Wildlife), as Newsweek reported.
Read More Show Less
The office of Rover.com sits empty with employees working from home due to the coronavirus pandemic on March 12 in Seattle, Washington. John Moore / Getty Images

The office may never look the same again. And the investment it will take to protect employees may force many companies to go completely remote. That's after the Centers for Disease Control and Prevention (CDC) issued new recommendations for how workers can return to the office safely.

Read More Show Less
Frederic Edwin Church's The Icebergs reveal their danger as a crush vessel is in the foreground of an iceberg strewn sea, 1860. Buyenlarge / Getty Images

Scientists and art historians are studying art for signs of climate change and to better understand the ways Western culture's relationship to nature has been altered by it, according to the BBC.

Read More Show Less

Trending

Esben Østergaard, co-founder of Lifeline Robotics and Universal Robots, takes a swab in the World's First Automatic Swab Robot, developed with Thiusius Rajeeth Savarimuthu, professor at the Maersk Mc-Kinney Moller Institute at The University of Southern Denmark. The University of Southern Denmark

By Richard Connor

The University of Southern Denmark on Wednesday announced that its researchers have developed the world's first fully automatic robot capable of carrying out throat swabs for COVID-19.

Read More Show Less