Quantcast

The Seafloor Is Disappearing

Popular
Pexels

By Marlene Cimons

Much of the deep sea has never been explored close-up by humans. Some submarines have plumbed its depths, but reaching the ocean bottom is a complicated and expensive journey, challenging because the seabed lies under more than three miles of water, which exerts huge amounts of pressure. "We know more about space than about the bottom of the oceans in our own planet, even though more than two-thirds of the surface of the Earth is covered by marine sediments," said Olivier Sulpis, a researcher and doctoral student at McGill University's department of earth and planetary sciences.


Thus, "we hear less about the effects of human activity at the seafloor than on corals, for instance, simply because coral bleaching sounds more appealing than mud dissolving at the bottom of the sea," he added. "When you think that before Google maps arrived, it took humans several centuries to map the continents, it's easy to understand why exploring the deep sea is so hard."

Nevertheless, he and his colleagues found a way to study it without actually going there. They recreated its environment in the lab, building little boxes filled with sediments overlain by sea water, keeping them in the dark. They duplicated sea water temperature and chemistry, as well as the composition of the sediment. By mimicking seabed conditions, "we don't need to go to the bottom of the sea to do measurements, and we save some time and energy." Sulpis said.

Sulpis and his team studied ocean floor sediment from the middle of the North Atlantic. Olivier Sulpis

What they found was worrisome. It has already been established that climate change—specifically atmospheric carbon dioxide emitted by fossil fuel burning—has been acidifying the oceans, damaging fragile coral reefs and disturbing vulnerable marine ecosystems. But the McGill scientists discovered that carbon dioxide also has begun to drift to the ocean bottom, dissolving the very materials that help put the brakes on acidification.

"Humans have become a geological force, and there is not a single part of the surface of our planet where we cannot find a trace of human activity," Sulpis said. "Paleoclimate scientists and Earth sciences students have heard and described many times past abrupt climate change and ocean acidification episodes, millions of years ago, that caused mass extinctions all around the world. These events were caused by meteoritic impacts, global wildfires, volcanic eruptions, etc. Today, it seems that we are at the dawn of one of these catastrophic events, and we don't need to look far to find the cause of it. Each one of us is the cause of it."

A diver surveys coral bleaching.The Ocean Agency

Normally, the seafloor is chalky white, largely made up of calcite formed from the skeletons and shells of planktonic organisms and corals. Calcite neutralizes carbon dioxide acidity, keeping seawater from becoming too acidic. But these days, at least in certain hotspots such as the North Atlantic and the southern oceans, the ocean's chalky bed is turning murky brown, the result of human activities that are causing carbon dioxide levels in the water to become too high and the water too acidic, according to new research published in Proceedings of the National Academy of Sciences. Eventually, the researchers predicted, the calcite won't be able to keep pace with acidification, dissolving before it can do its job.

"The calcite at the bottom of the ocean is like a big anti-acid pill," Sulpis said. "It dissolves when there is too much CO2 and this neutralizes excess CO­2 in the process. If the seafloor runs out of calcite, the ocean loses its anti-acid pill, and we could go towards a scary state of runaway ocean acidification."

The researchers measured how fast sediments dissolved when placed in boxes covered by seawater. "We did this for a few years, and eventually we realized that we understand this dissolution reaction well enough to describe it using simple mathematical equations," Sulpis explained. "If we know the chemical conditions and the sediment properties down there, we can compute the dissolution rate of calcite in these sediments. "

They used state-of-the-art ocean models, computing calcite dissolution rates across the seafloor. The experiments produced insights as to what controls calcite dissolution in marine sediments. By comparing pre-industrial and modern seafloor dissolution rates, they could determine how much of the total dissolution was caused by humans.

Seafloor of the Atlantis Massif in the Atlantic Ocean. NOAA

Scientists know that calcite has historically helped de-acidify the ocean. "What is surprising and concerning, however, is that it is already happening now," Sulpis said. "Scientists thought it would take much longer before we start seeing some calcite dissolution at the seafloor that is caused by our CO­2. We know how our climate works. We know how our oceans works, but what we are incapable of predicting is our society and how we will adapt our behavior to this changing world."

The findings have far-reaching implications. "Just as climate change isn't just about polar bears, ocean acidification isn't just about coral reefs," said David Trossman, now a research associate at the University of Texas-Austin and co-author of the study. "Our study shows that the effects of human activities have become evident all the way down to the seafloor in many regions, and the resulting increased acidification in these regions may impact our ability to understand Earth's climate history."

In future work, the researchers plan to study how dissolution likely will progress in the coming centuries. Since much of the carbon dioxide from burning fossil fuels still remains on the ocean surface, it could take decades, possibly even centuries, for CO2 to drop down to the bottom of the ocean, the scientists said. So all isn't lost—at least not yet, he said.

"Luckily for us, there is a lot of calcite out there, and only so much fossil fuel we can burn," Sulpis said. "That doesn't mean we have the green light to pollute more—it simply means that the oceans will be there to clean our mess, should it take thousands of years…" Hopefully, he added, "by then we will likely have stopped burning some fossil fuel, either because we ran out or—a smarter option—because we would have developed alternative, renewable energies."

Reposted with permission from our media associate Nexus Media.

EcoWatch Daily Newsletter

Aerial assessment of Hurricane Sandy damage in Connecticut. Dannel Malloy / Flickr / CC BY 2.0

Extreme weather events supercharged by climate change in 2012 led to nearly 1,000 more deaths, more than 20,000 additional hospitalizations, and cost the U.S. healthcare system $10 billion, a new report finds.

Read More Show Less
Giant sequoia trees at Sequoia National Park, California. lucky-photographer / iStock / Getty Images Plus

A Bay Area conservation group struck a deal to buy and to protect the world's largest remaining privately owned sequoia forest for $15.6 million. Now it needs to raise the money, according to CNN.

Read More Show Less
Sponsored
This aerial view shows the Ogasayama Sports Park Ecopa Stadium, one of the venues for 2019 Rugby World Cup. MARTIN BUREAU / AFP / Getty Images

The Rugby World Cup starts Friday in Japan where Pacific Island teams from Samoa, Fiji and Tonga will face off against teams from industrialized nations. However, a new report from a UK-based NGO says that when the teams gather for the opening ceremony on Friday night and listen to the theme song "World In Union," the hypocrisy of climate injustice will take center stage.

Read More Show Less
Vera_Petrunina / iStock / Getty Images Plus

By Wudan Yan

In June, New York Times journalist Andy Newman wrote an article titled, "If seeing the world helps ruin it, should we stay home?" In it, he raised the question of whether or not travel by plane, boat, or car—all of which contribute to climate change, rising sea levels, and melting glaciers—might pose a moral challenge to the responsibility that each of us has to not exacerbate the already catastrophic consequences of climate change. The premise of Newman's piece rests on his assertion that traveling "somewhere far away… is the biggest single action a private citizen can take to worsen climate change."

Read More Show Less
Volunteer caucasian woman giving grain to starving African children. Bartosz Hadyniak / E+ / Getty Images

By Frances Moore Lappé

Food will be scarce, expensive and less nutritious," CNN warns us in its coverage of the UN's new "Climate Change and Land" report. The New York Times announces that "Climate Change Threatens the World's Food Supply."

Read More Show Less
Sponsored
British Airways 757. Jon Osborne / Flickr / CC BY-SA 2.0

By Adam Vaughan

Two-thirds of people in the UK think the amount people fly should be reined in to tackle climate change, polling has found.

Read More Show Less
Climate Week NYC

On Monday, Sept. 23, the Climate Group will kick off its 11th annual Climate Week NYC, a chance for governments, non-profits, businesses, communities and individuals to share possible solutions to the climate crisis while world leaders gather in the city for the UN Climate Action Summit.

Read More Show Less

By Pam Radtke Russell in New Orleans

Local TV weather forecasters have become foot soldiers in the war against climate misinformation. Over the past decade, a growing number of meteorologists and weathercasters have begun addressing the climate crisis either as part of their weather forecasts, or in separate, independent news reports to help their viewers understand what is happening and why it is important.

Read More Show Less