Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

World’s Soils Have Lost 133bn Tonnes of Carbon Since the Dawn of Agriculture

Popular
Agencja Fotograficzna Caro / Alamy Stock Photo

By Daisy Dunne

The world's soils have lost a total of 133bn tonnes of carbon since humans first started farming the land around 12,000 years ago, new research suggests. And the rate of carbon loss has increased dramatically since the start of the industrial revolution.

The study, which maps where soil carbon has been lost and gained since 10,000 BC, shows that crop production and cattle grazing have contributed almost equally to global losses.


Understanding how agriculture has altered soil carbon stocks is critical to finding ways to restore lost carbon to the ground, another scientist tells Carbon Brief, which could help to buffer the CO2 accumulating in the atmosphere.

Soil as a Carbon Sink

The top meter of the world's soils contains three times as much carbon as the entire atmosphere, making it a major carbon sink alongside forests and oceans.

Soils play a key role in the carbon cycle by soaking up carbon from dead plant matter. Plants absorb CO2 from the atmosphere through photosynthesis, and pass carbon to the ground when dead roots and leaves decompose.

But human activity, in particular agriculture, can cause carbon to be released from the soil at a faster rate than it is replaced. This net release of carbon to the atmosphere contributes to global warming.

New research, published in the Proceedings of the National Academy of Sciences, estimates the total amount of carbon that has been lost since humans first settled into agricultural life around 12,000 years ago.

The research finds that 133bn tonnes of carbon, or 8 percent of total global soil carbon stocks, may have been lost from the top two meters of the world's soil since the dawn of agriculture. This figure is known as the total "soil carbon debt."

Around two-thirds of lost carbon could have ended up in the atmosphere, while the rest may have been transported further afield before being deposited back into the soil.

And since the industrial revolution, the rate of soil carbon loss has increased, said lead author Dr. Jonathan Sanderman, a scientist at the Woods Hole Research Center in Massachusetts. He told Carbon Brief:

"Considering humans have emitted about 450bn tonnes of carbon since the industrial revolution, soil carbon losses to the atmosphere may represent 10 to 20% of this number. But it has hard to calculate exactly how much of this has ended up in the atmosphere versus how much has been transported due to erosion."

'Hotspots' for Carbon Loss

As part of the study, the researchers designed an artificially intelligent model that used an existing global soil dataset to estimate past levels of soil carbon stocks, Sanderman said.

"We used a dataset which defines 10,000 BC as a world without a human footprint. What we did was develop a model that could explain the current distribution of soil carbon across the globe as a function of climate, topography [physical features], geology and land use. Then we replaced current land use with historic reconstructions including the 'no land use' case to get predictions of soil carbon levels back in time."

To calculate an overall soil carbon debt, the researchers subtracted the amount of current global soil carbon from the amount of soil carbon predicted to have existed in the era before human agriculture. The model also allowed the researchers to estimate global soil carbon stocks at different points throughout history, including at the advent of the industrial revolution.

The results allow scientists to get a clearer picture on how 12,000 years of human agriculture have affected the world's soil stocks, said Sanderman.

"More carbon has been lost due to agriculture than has generally been recognized and a lot of this loss predated the industrial revolution. This loss isn't equally distributed across agricultural land. Some regions stand out as having lost the most carbon."

Map B below shows the regions that have experienced the most soil carbon loss, and includes the U.S. corn belt and western Europe. The red shading represents the very highest level of soil carbon loss since 10,000 BC, while blue shows the highest level of carbon gain.

Map A shows the global distribution and intensity of crop production (red) and cattle grazing (green) and map B shows regional changes to soil carbon stocks since 10,000 BC. On map B, blue represents the highest level of soil carbon gain since 10,000 BC, while red shows the highest level of carbon loss. Black shows unfarmed desert regions.

The U.S. corn belt and western Europe are likely to have experienced high levels of soil carbon loss as a result of long periods of intense crop production, said Sanderman.

However, the analysis also reveals a number of regions which have seen high levels of soil carbon loss despite having relatively little farming. These "hot spots"—including the rangelands of Argentina, southern Africa and parts of Australia—are considered to be particularly vulnerable to land degradation driven by agriculture, said Sanderman.

"Semi-arid and arid grasslands [the hotspots] are particularly vulnerable to potentially irreversible degradation if grazing intensity is too high. That's because there isn't a lot of soil carbon to start with and there can often be a complete shift in vegetation cover leading to lots of erosion."

Map A shows the distribution and intensity of crop production (red) and cattle grazing (green) across the world. Both have contributed almost equally to loss of soil carbon stocks, Sanderman said.

Repaying the Debt

Identifying how much carbon has been lost from the soil could also help scientists understand how much could be replenished, if soils were managed so that they took up more carbon from the atmosphere than they released into it.

Soil carbon management is one of a number of negative emissions technologies (NETs) that could help to remove greenhouse gases from the air. Research suggests that NETs will be key to meeting the Paris agreement, which aims to keep warming "well below" 2C above pre-industrial temperatures, while striving to limit increases to 1.5C.

In theory, soils could be managed in a way that would allow them to reabsorb all of the carbon that has been lost since the agricultural revolution. In practice, however, this is highly unlikely, Sanderman explained.

"This figure [133bn tonnes of carbon] is likely a maximum potential if we were willing to give up agriculture and completely restore natural ecosystems. That is obviously not going to happen, so the real potential—giving the constraint of needing to feed 10 billion people by 2050—is going to be a lot lower."

Despite constraints, the research is a "critical" step towards finding ways to replenish soil carbon stocks, said Dr. Thomas Crowther from the Yale Climate and Energy Institute.

"Modifying large-scale agricultural practices to restore some of these lost soil carbon stocks might be a valuable strategy in our efforts to dampen climate change. If regenerative agriculture can restore some of the carbon that we have lost, then it might be a really valuable tool in our fight against climate change."

However, the study lacks clarity on how it considers peat soils, said Prof. Meine van Noordwijk, chief science advisor at the World Agroforestry Centre in Kenya, who also wasn't involved in the study.

Peat is a type of soil made up of waterlogged partially-decomposed plant material such as moss, which builds up over thousands of years in wetland environments including bogs.

Peat soils are thought to contain up to half of global soil carbon stocks, van Noordwijk explain to Carbon Brief, and so are of particular concern:

"Peat soils require and currently receive separate attention. Water management [of wetland soils] is a relevant part of agricultural use, leading to [carbon] losses, but also indicating opportunities for restoration."

Reposted with permission from our media associate Carbon Brief.

EcoWatch Daily Newsletter

By Michael Svoboda

The enduring pandemic will make conventional forms of travel difficult if not impossible this summer. As a result, many will consider virtual alternatives for their vacations, including one of the oldest forms of virtual reality – books.

Read More Show Less
Public Employees for Environmental Responsibility on Thursday accused NOAA of ignoring its own scientists' findings about the endangerment of the North Atlantic right whale. Lauren Packard / Flickr / CC BY 2.0

By Julia Conley

As the North Atlantic right whale was placed on the International Union for Conservation of Nature's list of critically endangered species Thursday, environmental protection groups accusing the U.S. government of bowing to fishing and fossil fuel industry pressure to downplay the threat and failing to enact common-sense restrictions to protect the animals.

Read More Show Less
Pexels

By Beth Ann Mayer

Since even moderate-intensity workouts offer a slew of benefits, walking is a good choice for people looking to stay healthy.

Read More Show Less
Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday. JustTulsa / CC BY 2.0

Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday.

Read More Show Less
The Firefly Watch project is among the options for aspiring citizen scientists to join. Mike Lewinski / Wikimedia Commons / CC by 2.0

By Tiffany Means

Summer and fall are great seasons to enjoy the outdoors. But if you're already spending extra time outside because of the COVID-19 pandemic, you may be out of ideas on how to make fresh-air activities feel special. Here are a few suggestions to keep both adults and children entertained and educated in the months ahead, many of which can be done from the comfort of one's home or backyard.

Read More Show Less
People sit at the bar of a restaurant in Austin, Texas, on June 26, 2020. Texas Governor Greg Abbott ordered bars to be closed by noon on June 26 and for restaurants to be reduced to 50% occupancy. Coronavirus cases in Texas spiked after being one of the first states to begin reopening. SERGIO FLORES / AFP via Getty Images

The coronavirus may linger in the air in crowded indoor spaces, spreading from one person to the next, the World Health Organization acknowledged on Thursday, as The New York Times reported. The announcement came just days after 239 scientists wrote a letter urging the WHO to consider that the novel coronavirus is lingering in indoor spaces and infecting people, as EcoWatch reported.

Read More Show Less

Trending

A never-before-documented frog species has been discovered in the Peruvian highlands and named Phrynopus remotum. Germán Chávez

By Angela Nicoletti

The eastern slopes of the Andes Mountains in central Perú are among the most remote places in the world.

Read More Show Less