Quantcast
Popular
Agencja Fotograficzna Caro / Alamy Stock Photo

World’s Soils Have Lost 133bn Tonnes of Carbon Since the Dawn of Agriculture

By Daisy Dunne

The world's soils have lost a total of 133bn tonnes of carbon since humans first started farming the land around 12,000 years ago, new research suggests. And the rate of carbon loss has increased dramatically since the start of the industrial revolution.

The study, which maps where soil carbon has been lost and gained since 10,000 BC, shows that crop production and cattle grazing have contributed almost equally to global losses.


Understanding how agriculture has altered soil carbon stocks is critical to finding ways to restore lost carbon to the ground, another scientist tells Carbon Brief, which could help to buffer the CO2 accumulating in the atmosphere.

Soil as a Carbon Sink

The top meter of the world's soils contains three times as much carbon as the entire atmosphere, making it a major carbon sink alongside forests and oceans.

Soils play a key role in the carbon cycle by soaking up carbon from dead plant matter. Plants absorb CO2 from the atmosphere through photosynthesis, and pass carbon to the ground when dead roots and leaves decompose.

But human activity, in particular agriculture, can cause carbon to be released from the soil at a faster rate than it is replaced. This net release of carbon to the atmosphere contributes to global warming.

New research, published in the Proceedings of the National Academy of Sciences, estimates the total amount of carbon that has been lost since humans first settled into agricultural life around 12,000 years ago.

The research finds that 133bn tonnes of carbon, or 8 percent of total global soil carbon stocks, may have been lost from the top two meters of the world's soil since the dawn of agriculture. This figure is known as the total "soil carbon debt."

Around two-thirds of lost carbon could have ended up in the atmosphere, while the rest may have been transported further afield before being deposited back into the soil.

And since the industrial revolution, the rate of soil carbon loss has increased, said lead author Dr. Jonathan Sanderman, a scientist at the Woods Hole Research Center in Massachusetts. He told Carbon Brief:

"Considering humans have emitted about 450bn tonnes of carbon since the industrial revolution, soil carbon losses to the atmosphere may represent 10 to 20% of this number. But it has hard to calculate exactly how much of this has ended up in the atmosphere versus how much has been transported due to erosion."

'Hotspots' for Carbon Loss

As part of the study, the researchers designed an artificially intelligent model that used an existing global soil dataset to estimate past levels of soil carbon stocks, Sanderman said.

"We used a dataset which defines 10,000 BC as a world without a human footprint. What we did was develop a model that could explain the current distribution of soil carbon across the globe as a function of climate, topography [physical features], geology and land use. Then we replaced current land use with historic reconstructions including the 'no land use' case to get predictions of soil carbon levels back in time."

To calculate an overall soil carbon debt, the researchers subtracted the amount of current global soil carbon from the amount of soil carbon predicted to have existed in the era before human agriculture. The model also allowed the researchers to estimate global soil carbon stocks at different points throughout history, including at the advent of the industrial revolution.

The results allow scientists to get a clearer picture on how 12,000 years of human agriculture have affected the world's soil stocks, said Sanderman.

"More carbon has been lost due to agriculture than has generally been recognized and a lot of this loss predated the industrial revolution. This loss isn't equally distributed across agricultural land. Some regions stand out as having lost the most carbon."

Map B below shows the regions that have experienced the most soil carbon loss, and includes the U.S. corn belt and western Europe. The red shading represents the very highest level of soil carbon loss since 10,000 BC, while blue shows the highest level of carbon gain.

Map A shows the global distribution and intensity of crop production (red) and cattle grazing (green) and map B shows regional changes to soil carbon stocks since 10,000 BC. On map B, blue represents the highest level of soil carbon gain since 10,000 BC, while red shows the highest level of carbon loss. Black shows unfarmed desert regions.

The U.S. corn belt and western Europe are likely to have experienced high levels of soil carbon loss as a result of long periods of intense crop production, said Sanderman.

However, the analysis also reveals a number of regions which have seen high levels of soil carbon loss despite having relatively little farming. These "hot spots"—including the rangelands of Argentina, southern Africa and parts of Australia—are considered to be particularly vulnerable to land degradation driven by agriculture, said Sanderman.

"Semi-arid and arid grasslands [the hotspots] are particularly vulnerable to potentially irreversible degradation if grazing intensity is too high. That's because there isn't a lot of soil carbon to start with and there can often be a complete shift in vegetation cover leading to lots of erosion."

Map A shows the distribution and intensity of crop production (red) and cattle grazing (green) across the world. Both have contributed almost equally to loss of soil carbon stocks, Sanderman said.

Repaying the Debt

Identifying how much carbon has been lost from the soil could also help scientists understand how much could be replenished, if soils were managed so that they took up more carbon from the atmosphere than they released into it.

Soil carbon management is one of a number of negative emissions technologies (NETs) that could help to remove greenhouse gases from the air. Research suggests that NETs will be key to meeting the Paris agreement, which aims to keep warming "well below" 2C above pre-industrial temperatures, while striving to limit increases to 1.5C.

In theory, soils could be managed in a way that would allow them to reabsorb all of the carbon that has been lost since the agricultural revolution. In practice, however, this is highly unlikely, Sanderman explained.

"This figure [133bn tonnes of carbon] is likely a maximum potential if we were willing to give up agriculture and completely restore natural ecosystems. That is obviously not going to happen, so the real potential—giving the constraint of needing to feed 10 billion people by 2050—is going to be a lot lower."

Despite constraints, the research is a "critical" step towards finding ways to replenish soil carbon stocks, said Dr. Thomas Crowther from the Yale Climate and Energy Institute.

"Modifying large-scale agricultural practices to restore some of these lost soil carbon stocks might be a valuable strategy in our efforts to dampen climate change. If regenerative agriculture can restore some of the carbon that we have lost, then it might be a really valuable tool in our fight against climate change."

However, the study lacks clarity on how it considers peat soils, said Prof. Meine van Noordwijk, chief science advisor at the World Agroforestry Centre in Kenya, who also wasn't involved in the study.

Peat is a type of soil made up of waterlogged partially-decomposed plant material such as moss, which builds up over thousands of years in wetland environments including bogs.

Peat soils are thought to contain up to half of global soil carbon stocks, van Noordwijk explain to Carbon Brief, and so are of particular concern:

"Peat soils require and currently receive separate attention. Water management [of wetland soils] is a relevant part of agricultural use, leading to [carbon] losses, but also indicating opportunities for restoration."

Reposted with permission from our media associate Carbon Brief.

Show Comments ()
Sponsored
TAFE SA TONSLEY / Flickr

Worldwide Clean Energy Investments Hit $333.5 Billion Last Year

Global investment in renewable energy hit $333.5 billion in 2018, the second-highest on record, according to a new analysis from Bloomberg New Energy Finance (BNEF).

That's a 3 percent jump from 2016 and 7 percent short of the $360 billion record set in 2015.

Keep reading... Show less
Renewable Energy

How Blockchain Could Boost Clean Energy

By Jeremy Deaton

Bitcoin, the much-hyped cryptocurrency, made headlines recently for driving a surge in power use. Around the globe, digital entrepreneurs are 'mining' bitcoins by solving complex math problems, using supercomputers to get the job done. Those supercomputers use a ton of power, which largely comes from coal- and gas-fired power plants spewing gobs of carbon pollution.

But while hackers wreak havoc on the climate, blockchain, the bleeding-edge technology behind bitcoin, could one day help clean up the mess. Climate wonks say blockchain has a role to play in the clean-energy economy, helping homeowners sell electricity, allowing businesses to trade carbon credits, and making it easier for governments to track greenhouse gas emissions.

Keep reading... Show less
Abdallah Issa / Flickr

Post-Fire Landslide Problems Likely to Worsen: What Can Be Done?

By Lee MacDonald

Several weeks after a series of wildfires blackened nearly 500 square miles in Southern California, a large winter storm rolled in from the Pacific. In most places the rainfall was welcomed and did not cause any major flooding from burned or unburned hillslopes.

But in the town of Montecito, a coastal community in Santa Barbara County that lies at the foot of the mountains blackened by the Thomas Fire, a devastating set of sediment-laden flows killed at least 20 people and damaged or destroyed more than 500 homes. In the popular press these flows were termed "mudslides," but with some rocks as large as cars these are more accurately described as hyperconcentrated flows or debris flows, depending on the amount of sediment mixed with the water.

Keep reading... Show less
The most notable observation from the count was DeMartino's sighting of the golden crowned kinglet, but in general volunteers found the same species they normally do. (Photo above is of a golden crowned kinglet, but not the one DeMartino spotted.) Melissa McMasters

Birders Get a First Look at How 2017 California Wildfires Affected Wildlife

By Matt Blois

A neighbor knocked on Rick Burgess's door at about 9:30 p.m. to tell him a fire was coming towards his home in Ventura, California. When he looked outside he saw a column of smoke, and the hills were already starting to turn orange. He loaded up his truck with a collection of native plants he was using to write a countywide plant guide, and barely had enough time to get out.

Keep reading... Show less
Sponsored
A learning garden from Kimbal Musk's nonprofit called Big Green. The Kitchen Community

Elon Musk's Brother Wants to Bring #RealFood to 100,000 Schools Across America

Kimbal Musk's nonprofit organization, The Kitchen Community, is expanding into a new, national nonprofit called Big Green, to build hundreds of outdoor Learning Garden classrooms across America.

Learning Gardens teach children an understanding of food, healthy eating and garden skills through experiential learning and garden-based education that tie into existing school curriculum, such as math, science and literacy.

Keep reading... Show less
Drilling fluids spilled into Ohio wetlands during construction of the Rover Pipeline in April. Sierra Club

Rover Pipeline Spills Another 150,000 Gallons of Drilling Fluid Into Ohio Wetlands

Energy Transfer Partners' troubled $4.2 billion Rover pipeline has spilled nearly 150,000 gallons of drilling fluid into wetlands near the Tuscarawas River in Stark County, Ohio—the same site where it released 2 million gallons in April.

The 713-mile pipeline, which will carry fracked gas across Pennsylvania, West Virginia, Ohio and Michigan and Canada, is currently under construction by the same Dallas-based company that built the controversial Dakota Access pipeline.

Keep reading... Show less
Sponsored

Large Dams Fail on Climate Change and Indigenous Rights

Brazil has flooded large swaths of the Amazon for hydro dams, despite opposition from Indigenous Peoples, environmentalists and others. The country gets 70 percent of its electricity from hydropower. Brazil's government had plans to expand development, opening half the Amazon basin to hydro. But a surprising announcement could halt that.

Keep reading... Show less
Jim Henderson / Wikimedia Commons

World's Largest Money Manager: Companies Must Respond to Social and Climate Challenges

The world's largest publicly traded companies must take a more active role in solving social issues or face blowback from investors, the CEO of BlackRock said Tuesday.

"To prosper over time, every company must not only deliver financial performance, but also show how it makes a positive contribution to society," Laurence Fink wrote in his annual letter to CEOs of companies in which BlackRock invests. BlackRock is the world's largest money manager, with more than $6 trillion in assets.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!