Environmental News for a Healthier Planet and Life

Wind-Blown Dust Is Causing Greenland’s Ice to Melt Faster

Wind-Blown Dust Is Causing Greenland’s Ice to Melt Faster
The western edge of the Greenland ice sheet in West Greenland as seen from the air. Ashley Cooper / Getty Images

As the world's ice sheets melt at an increasing rate, researchers are looking for explanations beyond just a hotter climate. A recent study found one answer may lie in the dust.

Published on Monday in Nature Communications, the study found that phosphorus, a mineral found in dust, is a key nutrient for an extensive glacier algae bloom on Greenland's ice sheet, known as the "dark zone." As the algae grow, the ice becomes darker, decreasing its ability to reflect sunlight and causing the ice to melt faster and sea levels to rise.

"It's important to understand the controls on algal growth because of their role in ice sheet darkening," Dr. Jenine McCutcheon, who led the study published in Nature Communications, told the University of Leeds. "Although algal blooms can cover up to 78 percent of the bare ice surfaces in the Dark Zone, their abundance and size can vary greatly over time," Dr. McCutcheon added.

Since 2000, the dark zone's melting season has "progressively started earlier and lasted longer," according to the University of Leeds. Glacier algal blooms are responsible for up to 13 percent of surface melting in this region, the study noted.

But until recently little was known about how these algal blooms developed.

Researchers found that phosphorus can cause the photosynthesis rate of the ice algae to improve significantly, McCutcheon said, according to the University of Leeds.

Although researchers examined dust sourced from local rock, they warned that dust can be transported thousands of miles by the wind.

"As dryland areas in northerly latitudes become even drier under climate change, we can expect to see more dust transported and deposited on the Greenland Ice Sheet, further fueling algal blooms," Associate Professor Dr. Jim McQuaid, who co-authored the study, noted.

"The findings of this study will improve how we predict where algal blooms will happen in the future, and help us gain a better understanding of their role in ice sheet albedo reduction and enhanced melting," Dr. McCutcheon added.

Researchers are also asking how these algal blooms will grow and darken in a warming climate.

"In 2019 our glaciers and ice sheets [are] already being darkened by dust, soot, and ash from our industrial world, which provides the perfect home for algae to flourish," Alexandre Anesio, a professor in Arctic biogeochemistry from Aarhus University, who was not affiliated with the University of Leeds study, told The Guardian. "As the organisms reproduce, they melt even more snow, which in turn allows them to proliferate again. So it's like a cycle. A very bad one."

Darkening ice is not just occurring on Greenland's ice sheets, according to The Guardian. It's happening globally, Professor Liane Benning of the German Research Center for Geosciences noted, also impacting the Alpine and Himalayan glaciers.

In Western Canada, wildfires fueled by climate change are also leaving ash on glaciers, staining the ice, creating habitats for algae and "accelerating the warming process in a feedback loop," Reuters reported.

"To be honest, I'm massively worried," Anesio told The Guardian. As the planet warms, researchers are rushing to find answers on glacial melting and its impact on biodiversity.

"I just hope that we are not crossing that tipping point because I don't think humans can adapt to the rates of changing climates at the moment," Anesio added.

An Edith's Checkerspot butterfly in Los Padres National Forest in Southern California. Patricia Marroquin / Moment / Getty Images

Butterflies across the U.S. West are disappearing, and now researchers say the climate crisis is largely to blame.

Read More Show Less

EcoWatch Daily Newsletter

A wildfire burns in the Hollywood hills on July 19, 2016 in Hollywood, California. AaronP / Bauer-Griffin / GC Images

California faces another "critically dry year" according to state officials, and a destructive wildfire season looms on its horizon. But in a state that welcomes innovation, water efficacy approaches and drought management could replenish California, increasingly threatened by the climate's new extremes.

Read More Show Less


Wisdom is seen with her chick in Feb. 2021 at the Midway Atoll National Wildlife Refuge. Jon Brack / Friends of Midway Atoll National Wildlife Refuge / Flickr / CC 2.0

Wisdom the mōlī, or Laysan albatross, is the oldest wild bird known to science at the age of at least 70. She is also, as of February 1, a new mother.

Read More Show Less
Wind turbines in Norway. piola66 / E+ / Getty Images

By Hui Hu

Winter is supposed to be the best season for wind power – the winds are stronger, and since air density increases as the temperature drops, more force is pushing on the blades. But winter also comes with a problem: freezing weather.

Read More Show Less
Jaffa Port in Israel. theDOCK innovated the Israeli maritime space and kickstarted a boom in new technologies. Pixabay

While traditional investment in the ocean technology sector has been tentative, growth in Israeli maritime innovations has been exponential in the last few years, and environmental concern has come to the forefront.

Read More Show Less