Quantcast

Scientists Create First Ever Map of ‘Wood Wide Web’

Popular
Pexels

For the first time ever, scientists have made a complete map of the "wood wide web," the underground network of bacteria and fungi that connects trees and passes nutrients from the soil to their roots, as Science Magazine explained.


The paper, published in Nature Thursday, draws on a database of more than 1.1 million forest inventory plots including more than 28,000 species of trees in more than 70 countries.

"It's the first time that we've been able to understand the world beneath our feet, but at a global scale," report co-author Prof. Thomas Crowther of ETH Zurich told BBC News.

Crowther had previously completed a map of all the world's trees and concluded that there were about three trillion, Science Magazine reported. Stanford University biologist Kabir Peay then reached out to Crowther to see if they could collaborate in mapping the fungal and bacterial networks below the trees as well. Science Magazine explained how the researchers were able to accomplish this goal:

Each tree in Crowther's database is closely associated with certain types of microbes. For example, oak and pine tree roots are surrounded by ectomycorrhizal (EM) fungi that can build vast underground networks in their search for nutrients. Maple and cedar trees, by contrast, prefer arbuscular mycorrhizae (AM), which burrow directly into trees' root cells but form smaller soil webs. Still other trees, mainly in the legume family (related to crop plants such as soybeans and peanuts), associate with bacteria that turn nitrogen from the atmosphere into usable plant food, a process known as "fixing" nitrogen.

The researchers wrote a computer algorithm to search for correlations between the EM-, AM-, and nitrogen-fixer–associated trees in Crowther's database and local environmental factors such as temperature, precipitation, soil chemistry, and topography. They then used the correlations found by the algorithm to fill in the global map and predict what kinds of fungi would live in places where they didn't have data, which included much of Africa and Asia.

"I haven't seen anybody do anything like that before," University of California, Irvine ecologist Kathleen Treseder told Science. "I wish I had thought of it."

The map also has important implications for climate change, BBC News explained. That's because EM fungi, more common in temperate forests, store more carbon in the soil. AM fungi, more prevalent in the tropics, release carbon back into the atmosphere more quickly. The database found that 60 percent of trees are connected to EM fungi, but these fungi are also more vulnerable to climate change. As temperatures warm, they will be replaced with species favoring AM fungi, which will release more carbon. If greenhouse gas emissions aren't lowered by 2100, EM fungi could decline by 10 percent, the paper's authors concluded.

"The types of fungi that support huge carbon stores in the soil are being lost and are being replaced by the ones that spew out carbon in to the atmosphere," Crowther told BBC News.

Treseder told Science she thought the paper's conclusions about the relationship between carbon and fungi were "a little bit more tenuous" because, she said, there is still more to be learned about how soil fungi interact with carbon. But she also didn't dismiss the paper's conclusions.

"I'm willing to be convinced," she said.

EcoWatch Daily Newsletter

A new study shows that half of all Arctic warming and corresponding sea-loss during the late 20th century was caused by ozone-depleting substances. Here, icebergs discharged from Greenland's Jakobshavn Glacier. Kevin Krajick / Earth Institute / EurekAlert!

The world awakened to the hole in the ozone layer in 1985, which scientists attributed it to ozone depleting substances. Two years later, in Montreal, the world agreed to ban the halogen compounds causing the massive hole over Antarctica. Research now shows that those chemicals didn't just cut a hole in the ozone layer, they also warmed up the Arctic.

Read More
Diane Wilson holds up a bag full of nurdles she collected from one of Formosa's outfall areas on Jan. 15. Julie Dermansky / DeSmogBlog

By Julie Dermansky

On the afternoon of Jan. 15, activist Diane Wilson kicked off a San Antonio Estuary Waterkeeper meeting on the side of the road across from a Formosa plastics manufacturing plant in Point Comfort, Texas.

After Wilson and the waterkeeper successfully sued Formosa in 2017, the company agreed to no longer release even one of the tiny plastic pellets known as nurdles into the region's waterways. The group of volunteers had assembled that day to check whether the plant was still discharging these raw materials of plastics manufacturing.

Read More
Sponsored

By Simon Coghlan and Kobi Leins

A remarkable combination of artificial intelligence (AI) and biology has produced the world's first "living robots."

Read More
Malaysian Environment Minister Yeo Bee Yin (front 2nd L) and officials inspect a container containing plastic waste shipment on Jan. 20, 2020 before sending back to the countries of origin. AFP via Getty Images

The Southeast Asian country Malaysia has sent 150 shipping containers packed with plastic waste back to 13 wealthy countries, putting the world on notice that it will not be the world's garbage dump, as CNN reported. The countries receiving their trash back include the United States, the United Kingdom, France and Canada.

Read More
Trump leaves after delivering a speech at the Congress Centre during the World Economic Forum annual meeting in Davos on Jan. 21, 2020. JIM WATSON / AFP via Getty Images

U.S. President Donald Trump dismissed the concerns of environmental activists as "pessimism" in a speech to political and business leaders at the start of the World Economic Forum (WEF) in Davos on Tuesday.

Read More