Quantcast

Can Road Salt and Other Pollutants Disrupt Our Circadian Rhythms?

Health + Wellness
Salting streets in Milwaukee. Michael Pereckas / CC BY-SA

By Jennifer Marie Hurley

Every winter, local governments across the U.S. apply millions of tons of road salt to keep streets navigable during snow and ice storms. Runoff from melting snow carries road salt into streams and lakes, and causes many bodies of water to have extraordinarily high salinity.

At Rensselaer Polytechnic Institute, my colleague Rick Relyea and his lab are working to quantify how increases in salinity affect ecosystems. Not surprisingly, they have found that high salinity has negative impacts on many species. They have also discovered that some species have the ability to cope with these increases in salinity.


But this ability comes at a price. In a recent study, Rick and I analyzed how a common species of zooplankton, Daphnia pulex, adapts to increasing levels of road salt. We found that this exposure affected an important biological rhythm: The circadian clock, which may govern Daphnia's feeding and predation avoidance behaviors. Since many fish prey on Daphnia, this effect could have ripples throughout entire ecosystems. Our work also raises questions about whether salt, or other environmental pollutants, could have similar impacts on the human circadian clock.

Daphnia pulexBrian Mattes, CC BY-ND

Daily biological rhythms and the circadian clock

In studying how road salt affects aquatic ecosystems, the Relyea lab showed that Daphnia pulex can adapt to handle moderate exposures in as little as two and a half months. These levels ranged from 15 milligrams of chloride (a building block of salt) per liter of water to a high of 1,000 milligrams per liter—a level found in highly contaminated lakes in North America.

However, an organism's ability to adapt to something in its environment can also be accompanied by negative trade-offs. My lab's collaboration with Rick's began in an effort to identify these trade-offs in salt-adapted Daphnia.

In my lab, we study how our circadian rhythms allow us to keep track of time. We investigate how the molecules in our cells work together to tick like a clock. These circadian rhythms allow an organism to anticipate 24-hour oscillations in its environment, such as changes from light (daytime) to dark (nighttime), and are essential to an organism's fitness.

Rick and I hypothesized that adaptation to high salinity could disrupt Daphnia's circadian rhythms based on recent evidence showing that other environmental contaminants can disrupt circadian behavior. One important behavior in Daphnia that may be controlled by the circadian clock is the diel vertical migration—the largest daily biomass migration on Earth, which occurs in oceans, bays and lakes. Plankton and fish migrate down to deeper water during the day to avoid predators and sun damage, and back up toward the surface at night to feed.

Echogram illustrating the ascending and descending phases of diel vertical migration, in which organisms ascend and descend through the water column. The color scale reflects acoustic scattering by concentrations of organisms at different depths. DEEP SEARCH—BOEM, USGS, NOAA

Given what we know about circadian function, it would be logical to assume that exposure to pollution would not affect an organism's circadian rhythms. While circadian clocks can incorporate environmental information to tell the time of day, they are heavily buffered against most environmental effects.

To understand the importance of this buffering, imagine that the timing of an organism's day length responded to environmental temperature. Heat speeds up molecular reactions, so on hot days the organism's 24-hour rhythm could become 20 hours, and on cold days it might become 28 hours. In essence, the organism would have a thermometer, not a clock.

Adaptation to pollution affects key circadian genes

To determine whether clock disruption is a trade-off to pollutant adaptation, we first had to establish that Daphnia is governed by a circadian clock. To do this, we identified genes in Daphnia that are similar to two genes, known as period and clock, in an organism that serves as a circadian model system: Drosophila melanogaster, the common fruit fly.

We tracked the levels of period and clock in Daphnia, keeping the organisms in constant darkness to ensure that a light stimulus did not affect these levels. Our data showed that the levels of period and clock varied over time with a 24-hour rhythm—a clear indication that Daphnia have a functional circadian clock.

We also tracked the same genes in populations of Daphnia that had adapted to increased salinity. Much to my surprise, we discovered that the daily variation of period and clock levels deteriorated directly with the level of salinity the Daphnia were adapted to. In other words, as Daphnia adapted to higher salinity levels, they showed less variation in the levels of period and clock over the day. This demonstrated that Daphnia's clock is indeed affected by pollutant exposure.

We currently don't understand what causes this effect, but the relationship between salinity levels and decreased variation in the levels of period and clock offers a clue. We know that exposure to pollutants causes Daphnia to undergo epigenetic regulation—chemical changes that affect the function of their genes, without altering their DNA. And epigenetic changes often show a gradual response, becoming more pronounced as the causal factor increases. Therefore, it is likely that high salinity is inducing chemical changes through these epigenetic mechanisms in Daphnia to suppress the function of its circadian clock.

The broad effects of circadian clock disruptions

We know that environmental conditions can affect what the clock regulates in many species. For example, changing the sugar that the fungus Neurospora crassa grows on changes which behaviors the clock regulates. But to our knowledge, this study is the first to show that genes of an organism's core clock can be directly impacted by adapting to an environmental contaminant. Our finding suggests that just as the gears of a mechanical clock can rust over time, the circadian clock can be permanently impacted by environmental exposure.

This research has important implications. First, if Daphnia's circadian clock regulates its participation in the diel vertical migration, then disrupting the clock could mean that Daphnia do not migrate in the water column. Daphnia are key consumers of algae and a food source for many fish, so disrupting their circadian rhythms could affect entire ecosystems.

Second, our findings indicate that environmental pollution may have broader effects on humans than previously understood. The genes and processes in Daphnia's clock are very similar to those that regulate the clock in humans. Our circadian rhythms control genes that create cellular oscillations affecting cell function, division and growth, along with physiological parameters such as body temperature and immune responses.

The human circadian clock regulates the cycles of many bodily functions.NIH

When these rhythms are disrupted in humans, we see increased rates of cancer, diabetes, obesity, heart disease, depression and many other diseases. Our work suggests that exposure to environmental pollutants may be depressing the function of human clocks, which could lead to increased rates of disease.

We are continuing our work by studying how the disruption of Daphnia's clock affects its participation in the diel vertical migration. We are also working to determine the underlying causes of these changes, to establish whether and how this could happen in the human brain. The impacts we have found in Daphnia show that even a simple substance such as salt can have extremely complex effects on living organisms.

Reposted with permission from our media associate The Conversation.

Show Comments ()

EcoWatch Daily Newsletter

Pixabay

An E. coli outbreak linked to ground beef has spread to 10 states and infected at least 156 people, CNN reported Wednesday.

Read More Show Less
The Anopheles stephensi mosquito, which carries malaria. CDC / Jim Gathany

The world's first malaria vaccine was launched in Malawi on Tuesday, NPR reported. It's an important day in health history. Not only is it the first malaria vaccine, it's the first vaccine to target any human parasite.

Read More Show Less
Sponsored
Ice-rich permafrost has been exposed due to coastal erosion, National Petroleum Reserve, Alaska. Brandt Meixell / USGS


By Jake Johnson

An alarming study released Tuesday found that melting Arctic permafrost could add nearly $70 trillion to the global cost of climate change unless immediate action is taken to slash carbon emissions.

According to the new research, published in the journal Nature Communications, melting permafrost caused by accelerating Arctic warming would add close to $70 trillion to the overall economic impact of climate change if the planet warms by 3°C by 2100.

Read More Show Less
Jeff Reed / NYC Council

The New York City Council on Thursday overwhelmingly passed one of the most ambitious and innovative legislative packages ever considered by any major city to combat the existential threat of climate change.

Read More Show Less
Ghazipur is a neighborhood in East Delhi. It has been one of the largest dumping site for Delhi. India is one of many countries where global warming has dragged down economic growth. Frédéric Soltan / Corbis / Getty Images

Global inequality is worse today because of climate change, finds a new study published Monday by Stanford University professors Noah Diffenbaugh and Marshall Burke in the Proceedings of the National Academy of Sciences.

Read More Show Less
Sponsored
A child playing with a ball from planet earth during Extinction Rebellion rally on April 18 in London, England. Brais G. Rouco / Barcroft Media / Getty Images

Earth Day 2019 just passed, but planning has already begun for Earth Day 2020, and it's going to be a big deal.

Read More Show Less
Geneva Vanderzeil, A Pair & A Spare / Flickr / CC BY 2.0

Is your closet filled with clothes you don't wear (and probably don't like anymore)? Are you buying cheap and trendy clothing you only wear once or twice? What's up with all the excess? Shifting to a more Earth-conscious wardrobe can help simplify your life, as well as curb fast fashion's toll on people and the planet.

Read More Show Less
Christine Zenino / Wikimedia Commons / CC BY 2.0

Greenland is melting six times faster than it was in the 1980s, which is even faster than scientists thought, CNN reported Tuesday.

Read More Show Less