Quantcast
Environmental News for a Healthier Planet and Life

Rice University Researchers Create Tiny Film That Could Replace Lithium Batteries

Chemists from Rice University have developed a new technology for energy storage, but if you don't look close enough, you might miss it.

It's only one one-hundredth of an inch thick.

The thin film is flexible and contains the best qualities of high-energy batteries, but without the lithium. The research of chemist James Tour and c0-authors Yang Yang, a postdoctoral researcher, and graduate student Gedeng Ruan have appeared in the Journal of the American Chemical Society.

"Compared with a lithium-ion device, the structure is quite simple and safe," Yang said. "It behaves like a battery but the structure is that of a supercapacitor. If we use it as a supercapacitor, we can charge quickly at a high current rate and discharge it in a very short time. But for other applications, we find we can set it up to charge more slowly and to discharge slowly like a battery."

[blackoutgallery id="332202"] 

Called an electrochemical capacitor, the film contains nanoporous nickel-fluoride electrodes layered around a solid electrolyte designed to "deliver battery-like supercapacitor performance" for various portable electronics on the market. Though it's tiny, the capacitor could be scaled up for devices either by increasing the size or adding layers, researchers said. They also believe it could be manufactured to be even thinner.

Tour and company set out to find a material with the flexible qualities of graphene, carbon nanotubes and conducting polymers while possessing much higher electrical storage capacity typically found in inorganic metal compounds. While testing, the students found that the square-inch device held 76 percent of its capacity over 10,000 charge-discharge cycles and 1,000 bending cycles.

“This is not easy to do, because materials with such high capacity are usually brittle,” Tour said. “And we’ve had really good, flexible carbon storage systems in the past, but carbon as a material has never hit the theoretical value that can be found in inorganic systems and nickel fluoride in particular.”

The Peter M. and Ruth L. Nicholas Postdoctoral Fellowship of the Smalley Institute for Nanoscale Science and Technology and the Air Force Office of Scientific Research’s Multidisciplinary University Research Initiative supported the chemists' research.

"The numbers are exceedingly high in the power that it can deliver, and it’s a very simple method to make high-powered systems,” Tour said, adding that the technique shows promise for the manufacture of other 3-D nanoporous materials. “We’re already talking with companies interested in commercializing this.”

——–

YOU ALSO MIGHT LIKE

Battery Storage Breakthrough at Harvard Could Play Huge Role in Future of Renewables

Oregon State Professor’s Breakthrough Uses Sun to Produce Solar Cells

——–

EcoWatch Daily Newsletter

Jörg Carstensen / picture alliance via Getty Images

By Carey Gillam

Bayer AG is reneging on negotiated settlements with several U.S. law firms representing thousands of plaintiffs who claim exposure to Monsanto's Roundup herbicides caused them to develop non-Hodgkin lymphoma, sources involved in the litigation said on Friday.

Read More Show Less
Tom Werner / DigitalVision / Getty Images

By Jillian Kubala, MS, RD

With many schools now closed due to the current COVID-19 outbreak, you may be looking for activities to keep your children active, engaged, and entertained.

Although numerous activities can keep kids busy, cooking is one of the best choices, as it's both fun and educational.

Read More Show Less
Sponsored
In Germany's Hunsrück village of Schorbach, numerous photovoltaic systems are installed on house roofs, on Sept. 19, 2019. Thomas Frey / Picture Alliance via Getty Images

Germany's target for renewable energy sources to deliver 65% of its consumed electricity by 2030 seemed on track Wednesday, with 52% of electricity coming from renewables in 2020's first quarter. Renewable energy advocates, however, warned the trend is imperiled by slowdowns in building new wind and solar plants.

Read More Show Less

In many parts of the U.S., family farms are disappearing and being replaced by suburban sprawl.

Read More Show Less
General view of the empty Alma bridge, in front of the Eiffel tower, while the city imposes emergency measures to combat the Coronavirus COVID-19 outbreak, on March 17, 2020 in Paris, France. Edward Berthelot / Getty Images

Half the world is on lockdown. So, the constant hum of cars, trucks, trains and heavy machinery has stopped, drastically reducing the intensity of the vibrations rippling through the Earth's crust. Seismologists, who use highly sensitive equipment, have noticed a difference in the hum caused by human activity, according to Fast Company.

Read More Show Less