Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Research Finds Vapors From Coniferous Trees Could Help Slow Global Warming

Climate

By Hannah Hickey

Pine forests are especially magical places for atmospheric chemists. Coniferous trees give off pine-scented vapors that form particles, very quickly and seemingly out of nowhere.

Forests are thought to emit many more of these scented compounds as temperatures rise, potentially slowing effects of global warming.
Photo courtesy of Shutterstock

New research by German, Finnish and U.S. scientists elucidates the process by which gas wafting from coniferous trees creates particles that can reflect sunlight or promote cloud formation, both important climate feedbacks. The study is published Feb. 27 in Nature.

“In many forested regions, you can go and observe particles apparently form from thin air. They’re not emitted from anything, they just appear,” said Joel Thornton, a University of Washington associate professor of atmospheric sciences and second author on the paper.

The study shows the chemistry behind these particles’ formation, and estimates they may be the dominant source of aerosols over boreal forests. The Intergovernmental Panel on Climate Change has named aerosols generally one of the biggest unknowns for climate change.

Scientists have known for decades that gases from pine trees can form particles that grow from just one nanometer in size to 100 nanometers in about a day. These airborne solid or liquid particles can reflect sunlight, and at 100 nanometers they are large enough to condense water vapor and prompt cloud formation.

In the new paper, researchers took measurements in Finnish pine forests and then simulated the same particle formation in an air chamber at Germany’s Jülich Research Centre. A new type of chemical mass spectrometry let researchers pick out one in a trillion molecules and follow their evolution.

Results showed that when a pine-scented molecule combines with ozone in the surrounding air, some of the resulting free radicals grab oxygen with unprecedented speed.

“The radical is so desperate to become a regular molecule again that it reacts with itself," Thornton said. "The new oxygen breaks off a hydrogen from a neighboring carbon to keep for itself, and then more oxygen comes in to where the hydrogen was broken off.”

The reaction chamber at the Juelich Plant Atmosphere Chamber. Photo credit: Felipe Lopez-Hilfiker/ University of Washington

Current chemistry would predict that three to five oxygen molecules could be added per day during oxidation, Thornton said. But researchers observed the free radical adding 10 to 12 oxygen molecules in a single step. This new, bigger molecule wants to be in a solid or liquid state, rather than gas, and condenses onto small particles of just three nanometers. Researchers found so many of these molecules are produced that they can clump together and grow to a size big enough to influence climate.

“I think unravelling that chemistry is going to have some profound impacts on how we describe atmospheric chemistry generally,” Thornton said.

Lead author Mikael Ehn did the work as a postdoctoral researcher in Germany, working in the group of co-author Thomas Mentel. Ehn is now based at the University of Helsinki in Finland.

Boreal or coniferous forests give off the largest amount of these compounds, so the finding is especially relevant for the northern parts of North America, Europe and Russia. Other types of forests emit similar vapors, Thornton said, and he believes the rapid oxidation may apply to a broad range of atmospheric compounds.

“I think a lot of missing puzzle pieces in atmospheric chemistry will start to fall into place once we incorporate this understanding,” Thornton said.

Forests are thought to emit exponentially more of these scented compounds as temperatures rise. Understanding how those vapors react could help to predict how forested regions will respond to global warming, and what role they will play in the planet’s response.

In related work, Thornton’s group was part of a campaign last summer to study air chemistry over the Southeastern U.S., where aerosols formed by reforested areas or from pollution could help explain why that region has not warmed as much as other places.

“It’s thought that as the Earth warms there will be more of these vapors emitted, and some fraction of them will be converted to particles which can potentially shade the Earth’s surface,” Thornton said. “How effective that is at temperature regulation is still very much an open question.”

The 33 co-authors also include Felipe Lopez-Hilfiker and Ben Lee, both at the University of Washington, and researchers from the University of Copenhagen in Denmark, the Institute for Tropospheric Research in Germany, Aerodyne Research Inc. in Massachusetts and Tampere University of Technology in Finland.

The research was funded by the European Research Council, Academy of Finland Center of Excellence, U.S. Department of Energy and the Emil Aaltonen Foundation.

Visit EcoWatch’s CLIMATE CHANGE page for more related news on this topic.

EcoWatch Daily Newsletter

Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday. JustTulsa / CC BY 2.0

Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday.

Read More Show Less
The Firefly Watch project is among the options for aspiring citizen scientists to join. Mike Lewinski / Wikimedia Commons / CC by 2.0

By Tiffany Means

Summer and fall are great seasons to enjoy the outdoors. But if you're already spending extra time outside because of the COVID-19 pandemic, you may be out of ideas on how to make fresh-air activities feel special. Here are a few suggestions to keep both adults and children entertained and educated in the months ahead, many of which can be done from the comfort of one's home or backyard.

Read More Show Less
People sit at the bar of a restaurant in Austin, Texas, on June 26, 2020. Texas Governor Greg Abbott ordered bars to be closed by noon on June 26 and for restaurants to be reduced to 50% occupancy. Coronavirus cases in Texas spiked after being one of the first states to begin reopening. SERGIO FLORES / AFP via Getty Images

The coronavirus may linger in the air in crowded indoor spaces, spreading from one person to the next, the World Health Organization acknowledged on Thursday, as The New York Times reported. The announcement came just days after 239 scientists wrote a letter urging the WHO to consider that the novel coronavirus is lingering in indoor spaces and infecting people, as EcoWatch reported.

Read More Show Less
A never-before-documented frog species has been discovered in the Peruvian highlands and named Phrynopus remotum. Germán Chávez

By Angela Nicoletti

The eastern slopes of the Andes Mountains in central Perú are among the most remote places in the world.

Read More Show Less
Left: Lemurs in Madagascar on March 30, 2017. Mathias Appel / Flickr. Right: A North Atlantic right whale mother and calf. National Marine Fisheries Service

A new analysis by scientists at the Swiss-based International Union for Conservation of Nature (IUCN) found that lemurs and the North Atlantic right whale are on the brink of extinction.

Read More Show Less
Nobody knows exactly how much vitamin D a person actually needs. However, vitamin D is becoming increasingly popular. Colin Dunn / Flickr / CC by 2.0

By Julia Vergin

It is undisputed that vitamin D plays a role everywhere in the body and performs important functions. A severe vitamin D deficiency, which can occur at a level of 12 nanograms per milliliter of blood or less, leads to severe and painful bone deformations known as rickets in infants and young children and osteomalacia in adults. Unfortunately, this is where the scientific consensus ends.

Read More Show Less

Trending

Data from a scientist measuring macroalgal communities in rocky shores in the Argentinean Patagonia would be added to the new system. Patricia Miloslavich / University of Delaware

Ocean scientists have been busy creating a global network to understand and measure changes in ocean life. The system will aggregate data from the oceans, climate and human activity to better inform sustainable marine management practices.

EcoWatch sat down with some of the scientists spearheading the collaboration to learn more.

Read More Show Less