Quantcast
Environmental News for a Healthier Planet and Life

Research Finds Critical ‘Bud-Break’ Gene Aids Trees in Adapting to Climate Change

Scientists have confirmed the function of a gene that controls the awakening of trees from winter dormancy, a critical factor in their ability to adjust to environmental changes associated with climate change.

While other researchers have identified genes involved in producing the first green leaves of spring, the discovery of a master regulator in poplar trees (Populus species) could eventually lead to breeding plants that are better adapted for warmer climates.

Photo courtesy of Shutterstock

The results of the study that began more than a decade ago at Oregon State University (OSU) were published yesterday in the Proceedings of the National Academy of Sciences, by scientists from Michigan Technological University and OSU.

“No one has ever isolated a controlling gene for this timing in a wild plant, outside of Arabidopsis, a small flowering plant related to mustard and cabbage,” said Steve Strauss, co-author and distinguished professor of forest biotechnology at OSU. “This is the first time a gene that controls the timing of bud break in trees has been identified.”

The timings of annual cycles—when trees open their leaves, when they produce flowers, when they go dormant—help trees adapt to changes in environmental signals like those associated with climate, but the genetics have to keep up, Strauss said.

While trees possess the genetic diversity to adjust to current conditions, climate models suggest that temperature and precipitation patterns in many parts of the world may expose trees to more stressful conditions in the future. Experts have suggested that some tree species may not be able to cope with these changes fast enough, whether by adaptation or migration. As a result, forest health may decline, trees may disappear from places they are currently found and some species may even go extinct.

“For example, are there going to be healthy and widespread populations of Douglas fir in Oregon in a hundred years?” said Strauss. “That depends on the natural diversity that we have and how much the environment changes. Will there be sufficient genetic diversity around to evolve populations that can cope with a much warmer and likely drier climate? We just don’t know.”

Strauss called the confirmation of the bud-break gene—which scientists named EBB1 for short—a “first step” in developing the ability to engineer adaptability into trees in the future.

“Having this knowledge enables you to engineer changes when they might become urgent,” Strauss said.

Yordan Yordanov and Victor Busov at Michigan Tech worked with Cathleen Ma and Strauss at Oregon State to trace the function of EBB1 in buds and other plant tissues responsible for setting forth the first green shoots of spring. They developed modified trees that overproduced EBB1 genes and emerged from dormancy earlier in the year. They also showed that trees with less EBB1 activity emerged from dormancy later.

“The absence of EBB1 during dormancy allows the tree to progress through the physiological, developmental and adaptive changes leading to dormancy,” said Busov, “while the expression of EBB1 in specific cell layers prior to bud-break enables reactivation of growth in the cells that develop into shoots and leaves, and re-entry into the active growth phase of the tree.”

The study began when Strauss noticed poplar trees emerging earlier than others in an experimental field trial at Oregon State. One April morning, he found that four seedling trees in a 2.5-acre test plot were putting forth leaves at least a week before all the other trees. Strauss and Busov, a former post-doctoral researcher at OSU, led efforts to identify the genes responsible.

They found that EBB1 codes for a protein that helps to restart cell division in a part of the tree known as meristem, which is analogous to stem cells in animals. EBB1 also plays a role in suppressing genes that prepare trees for dormancy in the fall and in other processes such as nutrient cycling and root growth that are critical for survival. Altogether, they found nearly 1,000 other poplar genes whose activity is affected by EBB1.

It’s unlikely that plant breeders will use the finding any time soon, Strauss said. Breeders tend to rely on large clusters of genes that are associated with specific traits such as hardiness, tree shape or flowering. However, as more genes of this kind are identified, the opportunity to breed or engineer trees adapted to extreme conditions will grow.

 

EcoWatch Daily Newsletter

Pope Francis delivers his homily on April 9, 2020 behind closed doors at St. Peter's basilica in the Vatican. ALESSANDRO DI MEO / POOL / AFP via Getty Images

Pope Francis spoke about the novel coronavirus, suggesting that the global pandemic might be one of nature's responses to the man-made climate crisis.

Read More Show Less
Migrating barn swallows rest on electricity cables in Heraklion, Crete, Greece. Patricia Fenn Gallery / Moment / Getty images

Thousands of swallows and other migratory birds have died in Greece trying to cross from Africa to Europe this spring.

Read More Show Less
Sponsored
A ringed seal swims in a water tank at the Osaka Aquarium Kaiyukan on July 26, 2013. Kazuhiro Nogi / AFP / Getty Images

Ringed seals spend most of the year hidden in icy Arctic waters, breathing through holes they create in the thick sea ice.

But when seal pups are born each spring, they don't have a blubber layer, which is their protection from cold.

Read More Show Less
A volunteer sets up beds in what will be a field hospital in the Cathedral Church of St. John the Divine on April 8, 2020 in New York City. The cathedral has partnered with Mount Sinai Morningside Hospital and is expected to have more than 400 beds when opened. Spencer Platt / Getty Images

New York state now has more confirmed coronavirus cases than any single country save the U.S. as a whole.

Read More Show Less

Trending

Moroccan patients who recovered from the novel coronavirus disease celebrate with medical staff as they leave the hospital in Sale, Morocco, on April 3, 2020. AFP / Getty Images

By Tom Duszynski

The coronavirus is certainly scary, but despite the constant reporting on total cases and a climbing death toll, the reality is that the vast majority of people who come down with COVID-19 survive it. Just as the number of cases grows, so does another number: those who have recovered.

In mid-March, the number of patients in the U.S. who had officially recovered from the virus was close to zero. That number is now in the tens of thousands and is climbing every day. But recovering from COVID-19 is more complicated than simply feeling better. Recovery involves biology, epidemiology and a little bit of bureaucracy too.

Read More Show Less