Report Shows U.S. Nuclear Regulators Still Ignoring Lessons of Fukushima Disaster

By Christopher Paine

Three years after Japan’s nuclear disaster, U.S. reactors remain vulnerable to the threat of runaway hydrogen production and leakage in a severe nuclear accident, with little or no capacity to safely reduce or vent potentially explosive concentrations of this gas, or capture its hazardous radioactive constituents before it explodes and contaminates the surrounding region, as occurred at Fukushima in March 2011.

That is the conclusion of a newly released NRDC report, "Preventing Hydrogen Explosions In Severe Nuclear Accidents: Unresolved Safety Issues Involving Hydrogen Generation And Mitigation." 

Indian Point nuclear generating station, located 28 miles north of New York City, is an example of a U.S. facility that a report says has been ignoring the explosion risk lessons exposed by the 2011 Fukushima disaster. Photo credit: Tony Fischer Photography/Flickr Creative Commons

The report musters a multitude of technical evidence showing that the U.S. Nuclear Regulatory Commission (NRC) underestimates the rate, extent and likely impacts of hydrogen production in severe loss-of-coolant accidents, and thus continues to ignore the lessons of Fukushima when it comes to ensuring “defense in depth” against the risks of a hydrogen explosion once a severe accident is in progress.

The report urges the NRC to require more frequent and authentic “leak-rate” tests of reactor containments, and to re-benchmark its computational capability for assessing hydrogen production in severe accidents with data obtained from realistic core damage experiments, as two essential predicates for setting new NRC requirements for U.S. nuclear power stations to minimize hydrogen explosion risk.

The aging fleet of U.S. reactors, which will increasingly operate beyond their initial 40-year term license terms, is now facing severe competitive pressures in wholesale competitive power markets, setting up difficult tradeoffs between low-carbon electricity supply, continued commercial viability, and the new investment required to sustain public safety. Many of the oldest nuclear units are General Electric Boiling Water Reactors (BWRs), with undersized Mark 1 and Mark II primary containments that  the NRC has known for decades are especially vulnerable to hydrogen leaks under the elevated pressure conditions expected to occur in severe accidents.

Mark Leyse, the principle author of the report and a technical consultant to NRDC, is critical of the NRC’s apparent willingness to accede to recent licensee requests to further relax and defer requirements for periodic containment pressurization and leak rate testing: He notes that “American BWR Mark I and II containments in particular have performed poorly in leak rate tests, yet the NRC is planning to further extend the permitted intervals between these tests, casting a blind eye toward the hydrogen explosions that occurred in three units of this very design at Fukushima.”

As his report explains in detail, hydrogen is produced in severe loss-of-coolant nuclear accidents when the overheated zirconium alloy tubes that surround the uranium fuel pellets chemically react with steam and undergo rapid oxidation, releasing hydrogen. Above about 1832 deg. F this reaction becomes “autocatalytic,” meaning it becomes self-sustaining by virtue of the heat produced by the chemical reaction alone, while the heat from radioactive decay that is responsible for initially heating up the zirconium fuel cladding continues to make a contribution that declines steadily with time from reactor shut-down. When an overheated core reaches this point, it is said to be in a “thermal runaway” condition, capable of producing thousands of kilograms of combustible hydrogen that can leak out and explode.

Leyse’s investigation found that the NRC’s regulatory passivity is grounded in the computer models it relies on to set safety requirements. These models do not accurately predict the onset of rapid hydrogen production, or the rates of hydrogen production shown in severe fuel damage experiments conducted in the 1980's and 1990's. In short, the NRC seems to be operating with an inadequate technical understanding of the nuclear accident risk it is tasked by statute to minimize.

While most Pressurized Water Reactors (PWRs)—those with the large domed reinforced concrete and steel containments familiar to many Americans as the symbol of nuclear power—can withstand higher containment pressures than BWRs, and have larger volumes in which to disperse hydrogen leaks, thereby potentially avoiding detonable concentrations,  the report notes that most US reactors “are not equipped to detect and control dangerous concentrations of hydrogen in all the places where it could migrate and explode in a nuclear power plant.” Nor, Leyse points out, has an analysis ever been done on the damage potential of flying objects generated in an explosion of hydrogen inside a containment. Yet we know from the Fukushima Daiichi accident that debris propelled by hydrogen detonations caused extensive damage to backup emergency power supplies and hoses that were intended to inject seawater into overheated reactors. Some of the debris dispersed around the site by explosions was highly radioactive, exposing personnel to higher dose rates and setting back their efforts to control the accident.

As previously noted by nuclear safety expert David Lochbaum of the Union of Concerned Scientists, poorly mitigated hydrogen explosion risk presents a serious threat to the so-called “FLEX” strategy for severe accident response proposed by the nuclear industry’s lobbying arm, the Nuclear Energy Institute, after Fukushima, and adopted almost verbatim by the NRC. The FLEX response strategy is essentially an array of remotely stored portable equipment that is supposed to be moved into place by workers in the immediate aftermath of a greater-than-expected triggering event, such as an earthquake, tornado, or flood, which severely damages the backup safety systems of the plant or leads to a complete loss of electrical power, temporarily disabling these systems. Inadequate hydrogen control during a severe accident could render key elements of the FLEX strategy ineffective at the very moment they are most needed.

The report also explores the little known fact that  when confronted with the quantities of hydrogen produced in severe accidents, current token capabilities for hydrogen control  are just as likely to trigger a hydrogen detonation as prevent one. For just this reason, NRDC has joined Riverkeeper in calling for the immediate removal of self-actuating “Passive Autocatalytic Recombiners” (PAR) devices from Indian Point nuclear generating station, located 28 miles north of New York City.  

However, knowing when to safely operate electrically-powered versions of these devices, which can be turned on and off,  requires knowing the  concentration of hydrogen in their immediate vicinity. But in 2003, the report notes, the NRC took the odd step of reclassifying such monitors as “non-safety related equipment,” meaning the equipment no longer needed needed to have redundancy, seismic resistance, or an independent train of onsite standby power. Furthermore, NRDC’s investigation found that GE-BWR Mark I and Mark II designs operate with hydrogen monitors installed only in their nitrogen-filled primary containments, not in their reactor buildings. In the Fukushima Daiichi accident, hydrogen from three Mark I units leaked undetected into these buildings and exploded.

The inability of U.S. nuclear operators to monitor hydrogen concentrations in all plant areas where it could migrate during a severe accident is matched by another critical monitoring deficiency: Operators of PWRs lack a sufficient capability to monitor the onset and progression of the nuclear fuel degradation that leads to runaway hydrogen production in an accident.  This deficient capability limits operator knowledge of when to transition from emergency operating procedures (EOPs)—intended to prevent fuel damage—to severe accident management guidelines (SAMGs)—intended to stabilize a damaged reactor core with auxiliary ad-hoc cooling measures while preventing significant off-site releases of radionuclide contamination.

Plant operators are supposed to implement SAMGs before the onset of the rapid zirconium-steam reaction, which leads to thermal runaway in the reactor core. Not knowing which regime one is operating in can have severe consequences. For example, PWR operators could end up re-flooding an overheated core simply because they do not know its actual condition. Unintentionally re-flooding an overheated core could generate hydrogen, at a rate as high as 5,000 grams per second, and the containment could be compromised if large quantities of that hydrogen were to detonate, as occurred at Fukushima.

The report explains that in PWRs, so called “core-exit thermocouples”—temperature measuring devices—are the primary equipment that would be used to detect inadequate core-cooling and signal the point at which operators should transition from EOPs to SAMGs. However, data from experiments demonstrate that core-exittemperature measurements are neither an accurate nor a timely indicator of maximum fuel-cladding temperatures in the core, and hence an unreliable indicator of the likelihood of significant hydrogen production.  In the most realistic severe accident experiment ever conducted—in which an actual reactor core was heated with [radioactive] decay heat before melting down—core-exit temperatures were measured at approximately 800 degrees when maximum in-core fuel-cladding temperatures exceeded 3300 degrees. Relying on core-exit thermocouple measurements for timely detection of inadequate core cooling or uncovering of the core is neither reliable nor safe.

In the face of the NRC’s inaction on this critical safety matter, the report presents the following six recommendations for actions to reduce the risk of hydrogen explosions in severe nuclear accidents:

The NRC should develop and experimentally validate computer safety models that can conservatively predict rates of hydrogen generation in severe accidents.

The NRC needs to acknowledge that its existing computer safety models under-predict the rates of hydrogen generation that occur in severe accidents. The NRC should conduct a series of experiments with multi-rod bundles of zirconium alloy fuel rod simulators and/or actual fuel rods as well as study the full set of existing experimental data. The NRC’s objective in this effort should be to develop models capable of predicting with greater accuracy the rates of hydrogen generation that occur in severe accidents.

The safety of existing hydrogen recombiners should be assessed, with the use of Passive Autocatalytic Recombiner (PARs) potentially discontinued until technical improvements are developed and certified. 

Experimentation and research should be conducted in order to improve the performance of self-actuating PARs so that they will not malfunction and incur ignitions in the elevated hydrogen concentrations that occur in severe accidents. The NRC and European regulators should perform safety analyses to determine if existing PARs should be removed from plant containments—and, if so, whether they should be replaced with electrically powered thermal hydrogen recombiners that have their own independent train of emergency power. The latter course would require operators to have instrumentation capable of providing timely information on the local hydrogen concentrations throughout the containment, so they could deactivate the thermal recombiners when hydrogen concentrations reached the levels at which the recombiners malfunction and incur ignitions.

Existing oxygen and hydrogen monitoring instrumentation should be significantly improved.

In line with the conclusions of the NRC’s own Advisory Committee on Reactor Safeguards (ACRS), the NRC should reclassify oxygen and hydrogen monitors as safety-related equipment which must undergo full qualification (including seismic qualification), must have redundancy, and must have has its own independent train of emergency electrical power.

The current NRC requirement that hydrogen monitors be functional within 90 minutes of emergency cooling water injection into the reactor vessel is clearly inadequate for protecting public and plant worker safety. The NRC should require that, following the onset of an accident, hydrogen monitors be functional within a timeframe that enables immediate detection of quantities of hydrogen indicative of core damage and a potential threat to containment integrity.

As first urged by our colleagues at the Union of Concerned Scientists, the NRC should also require hydrogen monitoring instrumentation to be installed in:

1) BWR Mark I and Mark II secondary containments;

2) fuel-handling buildings of PWRs and BWR Mark IIIs; and

3) any plant structure where it would be possible for hydrogen to enter.

Current core diagnostic capabilities require upgrading to provide plant operators a better signal for when to transition from emergency operating procedures to severe accident management guidelines.

The NRC should require plants to use thermocouples placed at different elevations and radial positions throughout the reactor core to enable plant operators to accurately measure a wide range of temperatures inside the core under both typical and accident conditions. In the event of a severe accident, in-core thermocouples would provide plant operators with crucial information to help them track the progression of core damage and manage the accident, indicating, in particular, the correct time to transition from EOPs to implementing SAMGs.

The NRC should require all nuclear power plants to control the total quantity of hydrogen that could be generated in a severe accident.

The NRC should require all nuclear power plants to operate with systems for combustible gas control that would effectively and safely control the total quantity of hydrogen that could potentially be generated in different severe accident scenarios; and to have strategies for venting gas from the inerted primary BWR Mark I and Mark II containments without causing significant radiological releases. The NRC should also require nuclear power plants to operate with systems for combustible gas control that are capable of preventing local concentrations of hydrogen in the containment from reaching concentrations that could support explosions powerful enough to breach the containment, or damage other essential accident-mitigating features. Hydrogen explosions are not expected to occur inside the primary BWR Mark I and Mark II containments, which operate with inerted atmospheres, unless somehow oxygen is present.

The NRC should require licensees who operate nuclear power plants with hydrogen igniter systems to perform analyses demonstrating that these systems would effectively and safely mitigate hydrogen in different severe accident scenarios. Licensees unable to do so would be ordered to upgrade their systems to adequate levels of performance.

The NRC should require that data from leak rate tests be used to help predict the hydrogen leak rates of the primary containment of each BWR Mark I and Mark II licensed by the NRC in different severe accident scenarios.

The NRC should require that data from overall leak rate tests and local leak rate tests—already required by Appendix J to Part 50 for determining how much radiation would be released from the containment in a design basis accident—also be used to help predict hydrogen leak rates for a range of severe accident scenarios involving the primary containments of each GE-BWR Mark I and Mark II licensed by the NRC. If data from an individual leak rate test were to indicate that dangerous quantities of explosive hydrogen gas would leak from a primary containment in a severe accident, the plant owner should be required to repair the containment.

The rationale for this requirement is obvious: Hydrogen explosions, or hydrogen concentrations in the reactor building that pose a detonation risk, can severely inhibit emergency response actions essential to containing the accident. Or even worse, emergency response actions themselves, such as hooking up portable power equipment, could actually provide the spark for hydrogen explosions in critical areas of the plant.

The NRC should also end its practice of allowing repairs to be made immediately before leak rate tests are conducted to evaluate potential leakage paths, such as containment welds, valves, fittings, and other components that penetrate containment. This “repair before test” practice obviously defeats the nuclear safety objective of providing an accurate statistical sample of actual pre-existing containment leak rates.

Finally, the NRC should reconsider its plan to extend the intervals of overall and local leak rate tests to once every 15 years and 75 months, respectively. The NRC needs to conduct safety analyses that consider BWR Mark I and Mark II primary containments vulnerable to hydrogen leakage. It also seems probable that as old reactors are kept in service beyond their original licensed lifetimes, the intervals between leak rate tests should be shortened rather than extended.

Visit EcoWatch’s NUCLEAR page for more related news on this topic.

Show Comments ()
U.S. Fish and Wildlife Service

Trump's Response to Climate-Related Disasters: Open America's 'Crown Jewels' to Oil Drilling

By Andy Rowell

You would have thought that after being battered by two devastating hurricanes in recent weeks, which experts believe were fueled by warmer seas caused by climate change, even the most die-hard climate denier would think again.

But you would be wrong.

You would have thought that as the cost of rebuilding after Hurricanes Irma and Harvey mounts, with an estimated bill of $150 billion so far, that politicians would press to move away from a fossil fuel economy.

But you would be wrong again. In fact the opposite is happening.

Instead of pushing for clean technology and to end our oil addiction, the Trump administration is quietly pushing to open up one of America's great last wilderness areas, the Arctic National Wildlife Refuge, to oil drilling.

The Arctic National Wildlife Refuge—or ANWR for short—has been described as "one of the largest intact ecosystems in the world," and "the crown jewel of the National Wildlife Refuge System and one of the most important protected areas on Earth."

Anyone who knows about contemporary American petro-politics will know that the fight over ANWR is not new. It is a 40 year "multi-generational" fight. The naturalist, Peter Matthiessen, once called the battle over ANWR the "longest running, most acrimonious environmental battle in American history."

The oil industry and its allies have long salivated over the prospect of drilling in the refuge's 19.6 million acres. They have long argued that the refuge, home to caribou, polar bears and many endangered species, also houses an estimated 10 billion of barrels of recoverable oil.

There could be more oil, there could be much less, there could be none—no one really knows for sure.

The industry has wanted to drill the refuge for decades, but have been stopped by a determined coalition of environmentalists, First Nations and conservationists.

But for how much longer? When Trump became president he said that opening up ANWR was a top priority. And it seems that despite the recent Hurricanes, Trump is pressing ahead to do this.

As the Washington Post reported at the end of last week: "The Trump administration is quietly moving to allow energy exploration in the Arctic National Wildlife Refuge ... with a draft rule that would lay the groundwork for drilling."

Although the Trump administration is pushing for the move, the final say on whether drilling goes ahead lies with Congress.

But in the meantime, officials from the Interior Department—now stuffed full of pro-oil appointees—are quietly modifying a regulation from the 1980's that would allow the industry to undertake seismic surveys.

The Post acquired a leaked memo from the U.S. Fish and Wildlife Service acting director, James Kurth, to prepare an assessment and a proposed rule to update regulations which go back to the eighties.

Kurth wrote: "When finalized, the new regulation will allow for applicants to [submit] requests for approval of new exploration plans."

Once the rule is finalized, companies could bid to undertake seismic testing in the refuge.

Environmentalists are naturally outraged. Defenders of Wildlife president, Jamie Rappaport Clark, who led the Fish and Wildlife Service under President Bill Clinton, told the Post: "The administration is very stealthily trying to move forward with drilling on the Arctic's coastal plain ... This is a complete about-face from decades of practice."

"This is a really big deal," adds Niel Lawrence, Alaska director of the Natural Resources Defense Council. "This is a frontal attack in an ideological battle. The Arctic is the Holy Grail."

It looks like this battle will go to the courts. It could drag on for years. The stakes are huge. As Robert Mrazek, a former New York congressman and chair emeritus of the Alaska Wilderness League told a recent article in Fortune magazine: "ANWR is an American Serengeti. You can have the oil. Or you can have this pristine place. You can't have both. No compromise."

Sarah James, an ambassador for the Gwich'in First Nations, who lives close to the refuge and who opposes oil development, adds: "If you drill for oil here, you will be drilling into the heart of our people."

Manfred Bortoli

New Agreement Offers Brighter Future for Pacific Bluefin Tuna

By Amanda Nickson

The Pacific bluefin tuna is among the most depleted species on the planet, having been fished down more than 97 percent from its historic, unfished size. For years, this prized fish has been in dire need of strong policies that would reverse that decline, but the two organizations responsible for its management—the Western and Central Pacific Fisheries Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC)—failed in their recent efforts, allowing overfishing to continue and further risking the future of the species.

Last week, however, at a joint meeting of the WCPFC Northern Committee and IATTC, Pacific bluefin received a much-needed respite when its primary fishing nations—Japan, South Korea, Taiwan, Mexico and the U.S.—reached agreement with other member states on a long-term plan that would rebuild the population from its current status of 2.6 percent of pre-fishing levels to 20 percent by 2034. This agreement, if properly implemented, would start the species—and the fishing industry that depends on it—on a path toward sustainability.

After decades of inaction, why did these two fisheries management bodies agree to take the needed steps toward rebuilding? Because ignoring the problem became impossible for managers. In the past two years, three nations exceeded their catch limits. Amid increasing calls from The Pew Charitable Trusts and others for a complete fishing moratorium, and in a worst-case scenario, an international trade ban, the government representatives to the WCPFC committee and IATTC finally stepped up to make a change.

Perhaps most significant was the course reversal by Japan. By far the largest fishing nation for, and consumer of, Pacific bluefin, Japan had long resisted proposed rebuilding plans. This year, though, thanks in part to strong international pressure and growing media attention within the country on the plight of the species, the Japanese delegates dropped that opposition and helped make progress that just a few years ago seemed far out of reach.

Despite this commitment, the work to help Pacific bluefin recover has only begun. In the fishing season that ended on June 30, Japanese fishermen exceeded their catch limits by 334 metric tons, and with many reports of illegal fishing in Japan's waters, the real amount could be higher. The U.S., South Korea and Mexico also exceeded limits over the past two years. Rebuilding the species under the new quotas and timeline will be nearly impossible if such overages continue. All countries that fish for Pacific bluefin must pledge to strengthen their domestic controls and monitoring programs to guarantee that the commitments to rebuilding made this year are not squandered in the future.

The decision on Pacific bluefin made at the joint meeting could signal a move toward a greater focus on conservation at regional fisheries management organizations like the WCPFC and IATTC. This action by major fishing nations indicates that concrete action is possible. Fishermen and fleets now hold the key to a sustained recovery, and all countries must work together to uphold the new rules. If they can do that, real change on the water may come sooner than many of us expected.

Hurricane Irma damage in northeast Florida. St. Johns County Fire Rescue

Why Hurricanes Harvey and Irma Won’t Lead to Action on Climate Change

By Scott Gabriel Knowles

It's not easy to hold the nation's attention for long, but three solid weeks of record-smashing hurricanes directly affecting multiple states and at least 20 million people will do it.

Clustered disasters hold our attention in ways that singular events cannot—they open our minds to the possibility that these aren't just accidents or natural phenomena to be painfully endured. As such, they can provoke debates over the larger "disaster lessons" we should be learning. And I would argue the combination of Harvey and Irma has triggered such a moment.

Keep reading... Show less
Gold Butte National Monument / U.S. Bureau of Land Management

Leaked Zinke Memo Urges Trump to Shrink National Monuments, Allow Drilling

Despite receiving 2.8 million comments from the public in support of our national monuments, U.S. Department of the Interior Sec. Ryan Zinke has advised President Trump to change the way at least 10 of these treasured areas are managed and to shrink the boundaries of at least four of them.

Zinke's report, submitted to Trump in late August and leaked Sunday night, didn't address more than a dozen other monuments that had been under official review.

Keep reading... Show less

Naomi Klein Warns Europe May Water Down Paris Accord to Win Support from Trump

President Donald Trump on Tuesday is scheduled to address the United Nations General Assembly. Climate change is expected to be high on the agenda at this year's gathering.

As the world leaders meet, another major storm—Hurricane Maria—is gaining strength in the Caribbean and following a similar path as Hurricane Irma. The current forecast shows Maria could hit Puerto Rico as a Category 4 storm as early as Wednesday. The U.S. Virgin Islands, which were devastated by Irma, also appear to be in line to be hit by Maria.

Meanwhile, The Wall Street Journal reported over the weekend that the Trump administration is considering staying in the Paris climate agreement, just months after the president vowed to pull out of it. The White House denied the report. Secretary of State Rex Tillerson on Sunday signaled Trump may back away from the Paris accord, but National Security Adviser H.R. McMaster gave a different message on Fox News Sunday.

We speak with best-selling author Naomi Klein, a senior correspondent for The Intercept. Her most recent book, "No Is Not Enough: Resisting Trump's Shock Politics and Winning the World We Need," has been longlisted for a National Book Award.

U.S. Army soldiers drive a woman to safety following flooding from Hurricane Harvey in Orange, Texas. Spc. Austin T. Boucher

Beyond Harvey and Irma: Homeland Security in the Climate Change Era

By Michael T. Klare

Deployed to the Houston area to assist in Hurricane Harvey relief efforts, U.S. military forces hadn't even completed their assignments when they were hurriedly dispatched to Florida, Puerto Rico and the U.S. Virgin Islands to face Irma, the fiercest hurricane ever recorded in the Atlantic Ocean.

Florida Gov. Rick Scott, who had sent members of the state National Guard to devastated Houston, anxiously recalled them while putting in place emergency measures for his own state. A small flotilla of naval vessels, originally sent to waters off Texas, was similarly redirected to the Caribbean, while specialized combat units drawn from as far afield as Colorado, Illinois and Rhode Island were rushed to Puerto Rico and the Virgin Islands. Meanwhile, members of the California National Guard were being mobilized to fight wildfires raging across that state (as across much of the West) during its hottest summer on record.

Keep reading... Show less
UN General Assembly Hall. Patrick Gruban / Flickr

Rumors, Mixed Signals Cloud U.S. Plans for Paris Agreement

Rumors and mixed signals on the U.S.'s plans for the Paris agreement swirled over the weekend as the Trump administration prepared for its first UN General Assembly meeting this week.

Reports surfaced that a White House senior official had indicated at an energy summit in Montreal that the U.S. might soften its opposition to the accord.

Keep reading... Show less

America Is Doubling Down on Climate Progress

As Climate Week begins in New York, a lot of the world is asking Americans, "How are you doing at making climate progress with a climate denying president?"

The surprising answer is, "Not well enough yet, but much better than you imagine."

Keep reading... Show less


Get EcoWatch in your inbox