Renewables Generate More Electricity Than Fossil Fuels in UK for First Time

By Simon Evans
During the three months of July, August and September, renewables generated an estimated total of 29.5 terawatt hours (TWh), compared with just 29.1TWh from fossil fuels, the analysis shows.
This is the first-ever quarter where renewables outpaced fossil fuels since the UK's first public electricity generating station opened in 1882. It is another symbolic milestone in the stunning transformation of the UK's electricity system over the past decade.
Nevertheless, a lack of progress in other parts of the economy means the UK remains far off track against its upcoming legally-binding carbon targets, let alone the recently adopted goal of net-zero greenhouse gas emissions by 2050.
Transformative Decade
At the start of this decade in 2010, the 288TWh generated from fossil fuels accounted for around three-quarters of the UK total. It was also more than 10 times as much electricity as the 26TWh that came from renewables.
Since then, electricity generation from renewable sources has more than quadrupled – and demand has fallen – leaving fossil fuels with a shrinking share of the total.
This shift is shown in the chart below, with the declining quarterly output from power stations burning coal, oil and gas in blue and rising generation from renewables in red.
(The quarterly chart also reflects the seasons, with demand higher in winter and lower in summer. Wind farm output is well matched with this cycle, as it tends to be windier in winter.)
Quarterly electricity generation in the UK between 2009 and the third quarter of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: BEIS Energy Trends and Carbon Brief analysis of data from BM Reports. Chart by Carbon Brief using Highcharts
The chart above shows that electricity generation from fossil fuels has halved since 2010, from 288TWh down to 142TWh in the most recent 12-month period.
Gas now contributes the vast majority of that shrinking total, as coal plants close down ahead of a planned phaseout in 2025. These ageing power stations were mostly built in the 1960s and 70s and are increasingly uneconomic to run due to CO2 prices, market forces and pollution rules.
In the third quarter of 2019, some 39 percent of UK electricity generation was from coal, oil and gas, including 38% from gas and less than 1 percent from coal and oil combined.
Another 40 percent came from renewables, including 20 percent from wind, 12 percent from biomass and 6 percent from solar. Nuclear contributed most of the remainder, generating 19 percent of the total.
While it is unlikely that renewables will generate more electricity than fossil fuels during the full year of 2019, it is now a question of when – rather than if – this further milestone will be passed.
This summer, National Grid predicted that zero-carbon sources of electricity – wind, nuclear, solar and hydro, but not biomass – would generate more electricity than fossil fuels during 2019. Carbon Brief's analysis through to the third quarter of the year is in line with this forecast.
New Capacity
Over the past year, the most significant reason for rising renewable generation has been an increase in capacity as new offshore wind farms have opened. The 1,200 megawatt (MW) Hornsea One project was completed in October, becoming the world's largest offshore wind farm. The 588MW Beatrice offshore wind farm was completed in Q2 of this year.
These schemes add to the more than 2,100MW of offshore capacity that started operating during 2018. Further capacity is already being built, including the 714MW East Anglia One project that started generating electricity this year and will be completed in 2020.
In total, government contracts for offshore wind will take capacity from nearly 8,500MW today to around 20,000MW by the mid-2020s. The government and industry are jointly aiming for at least 30,000MW of offshore wind capacity by 2030, with two further contract auctions already expected.
In September, the latest auction round produced record-low deals for offshore wind farms that will generate electricity more cheaply than expected market prices – and potentially below the cost of running existing gas plants.
Other contributors to the recent increase in renewable generation include the opening of the 420MW Lynemouth biomass plant in Northumberland last year and the addition of hundreds of megawatts of new onshore wind and solar farms. (Another new 299MW biomass plant being built on Teesside, with a scheduled opening in early 2020, is facing "major delays".)
According to the Department of Business, Energy and Industrial Strategy (BEIS), the rise in renewable output during the first half of 2019 was down to these increases in capacity, with weather conditions not unusual for the time of year.
Some two-thirds of electricity generated from biomass in the UK comes from "plant biomass", primarily wood pellets burnt at Lynemouth and the Drax plant in Yorkshire. The remainder comes from an array of smaller sites based on landfill gas, sewage gas or anaerobic digestion.
The Committee on Climate Change says the UK should "move away" from large-scale biomass power plants, once existing subsidy contracts for Drax and Lynemouth expire in 2027.
Using biomass to generate electricity is not zero-carbon and in some circumstances could lead to higher emissions than from fossil fuels. Moreover, there are more valuable uses for the world's limited supply of biomass feedstock, the CCC says, including carbon sequestration and hard-to-abate sectors with few alternatives.
In terms of fossil-fuel generating capacity, the UK's remaining coal plants are rapidly closing down, well ahead of a 2025 deadline to phase out unabated burning of the fuel. By March 2020, just four coal plants will remain in the UK.
Utility firms have plans to build up to 30,000MW of new gas capacity – including 3,600MW at Drax recently given government planning approval – despite the fact that government projections suggest only around 6,000MW might be needed by 2035.
It is unlikely that all of the planned new gas capacity will get built. The schemes are generally reliant on winning contracts under the UK's capacity market, which is designed to ensure electricity supply is always sufficient to meet demand.
The rise of renewables means that gas generation is likely to continue falling in the UK, whether or not this new capacity gets built. Nevertheless, the UK is unlikely to meet its legally binding goal of cutting overall emissions to net-zero by 2050, unless progress in the electricity sector is matched by reductions in other parts of the UK economy, such as heating and transport.
Consecutive Months
Carbon Brief's electricity-sector analysis shows that renewables are also estimated to have generated more electricity than fossil fuels during the individual months of August and September, the first time there have been two consecutive such months.
Previously, renewables beat fossil fuels in September 2018 – the first-ever whole month – and then again in March 2019. This means that there have only ever been four months where renewables outpaced fossil generation, of which three have been this year and two in the last two months.
This is shown in the chart, below, which also highlights the greater month-to-month variability in electricity generation and demand, which is overlaid on top of the broader seasonal cycles.
Monthly electricity generation in the UK between 2012 and the third quarter of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts
In the first three quarters of 2019, renewables outpaced fossil fuels on 103 of the 273 individual days, Carbon Brief analysis suggests. This is more than one-third of the days in the year so far and includes 40 of the 91 days in the third quarter of 2019.
(Although this is not a majority of days, the aggregate output during the quarter was higher for renewables. This is because their excess over fossil fuels was large on some days.)
As expected from the monthly aggregates in the chart, above, these days with higher renewable generation are concentrated in March and the third quarter of 2019, as shown in the chart, below.
Daily electricity generation in the UK during the first three quarters of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts.
The total of 103 days with higher renewable electricity generation than from fossil fuels in the first three quarters of the year is far in excess of the 67 such days by the same point in 2018.
This is shown in the chart, below, which also highlights the fact that there had never been any days with higher renewable generation until 2015.
Cumulative count of days each year when electricity generation from renewables was higher than that from fossil fuels. Prior to 2015 there were no days when renewables outpaced fossil fuels. Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts.
There have already been nearly as many higher renewable days in the first three quarters of 2019, at 103, as there were in the whole of 2018, which saw 107 such days. There were only 58 such days in 2017, just 16 in 2016 and 12 in 2015. The first ever day when UK renewables generated more electricity than fossil fuels was 11 April 2015.
Methodology
The figures in the article are from Carbon Brief analysis of data from BEIS Energy Trends chapter 5 and chapter 6, as well as from BM Reports. The figures from BM Reports are for electricity supplied to the grid in Great Britain only and are adjusted to include Northern Ireland.
In Carbon Brief's analysis, the BM Reports numbers are also adjusted to account for electricity used by power plants on site and for generation by plants not connected to the high-voltage national grid. This includes many onshore wind farms, as well as industrial gas combined heat and power plants and those burning landfill gas, waste or sewage gas.
By design, the Carbon Brief analysis is intended to align as closely as possible to the official government figures on electricity generated in the UK, reported in BEIS Energy Trends table 5.1. Briefly, the raw data for each fuel is adjusted with a multiplier, derived from the ratio between the reported BEIS numbers and unadjusted figures for previous quarters.
Carbon Brief's method of analysis has been verified against published BEIS figures using "hindcasting". This shows the estimates for total electricity generation from fossil fuels or renewables to have been within ±3% of the BEIS number in each quarter since Q4 2017. (Data before then is not sufficient to carry out the Carbon Brief analysis.)
For example, in the second quarter of 2019, a Carbon Brief hindcast estimates gas generation at 33.1TWh, whereas the published BEIS figure was 34.0TWh. Similarly, it produces an estimate of 27.4TWh for renewables, against a BEIS figure of 27.1TWh.
The Carbon Brief estimated totals for fossil fuels and renewables are very close in Q3 2019, coming within 0.5TWh of each other. This means that despite the relatively low level of uncertainty in the estimates, their relative position could be reversed in the official BEIS data.
This serves to emphasize the fact that the broader trend of decline for fossil fuels and an increase for renewables is of far greater significance than the precise figures for any individual quarter.
In contrast to Carbon Brief's analysis, figures published by consultancy EnAppSys for the third quarter of 2019 suggest that fossil fuels generated slightly more electricity than renewables. There are several reasons for this difference.
First, the company's analysis is for Great Britain only, whereas Carbon Brief's covers the UK overall. Second, it reports on electricity "supplied" in the country, including imports, whereas Carbon Brief estimates the amount of electricity "generated" within the UK only.
Third, Carbon Brief's analysis is, by design, aligned with the quarterly BEIS Energy Trends data for electricity generation, whereas EnAppSys uses its own approach.
For comparison, EnAppSys reported for the second quarter of 2019 that 28.3TWh was supplied in GB from gas, whereas BEIS reports that 34.0TWh was generated in the UK. Similarly EnAppSys reported 23.1TWh coming from renewables, against a BEIS figure of 27.1TWh.
Reposted with permission from our media associate Carbon Brief.
- UK Achieves First Coal-Free Week Since Industrial Revolution ... ›
- Britain Just Went Nearly Three Weeks Without Coal, a New Record ... ›
- Clean Power Overtaking Fossil Fuels in Britain in 2019 - EcoWatch ›
In 2010, world leaders agreed to 20 targets to protect Earth's biodiversity over the next decade. By 2020, none of them had been met. Now, the question is whether the world can do any better once new targets are set during the meeting of the UN Convention on Biodiversity in Kunming, China later this year.
- Ocean Scientists Create Global Network to Help Save Biodiversity ... ›
- 5 Reasons Why Biodiversity Matters - EcoWatch ›
- 26 Organizations Working to Conserve Seed Biodiversity - EcoWatch ›
- The Top 10 Ocean Biodiversity Hotspots to Protect - EcoWatch ›
- New Platform Shows How to Protect Biodiversity and Save Planet ... ›
- These Scientists Are Listening to the Borneo Rainforest to Protect ... ›
EcoWatch Daily Newsletter
By Andrew Rosenberg
The first 24 hours of the administration of President Joe Biden were filled not only with ceremony, but also with real action. Executive orders and other directives were quickly signed. More actions have followed. All consequential. Many provide a basis for not just undoing actions of the previous administration, but also making real advances in public policy to protect public health, safety, and the environment.
- Here Are Biden's Day One Actions on Climate and Environment ... ›
- UCS Offers Science Advice for Biden Administration - EcoWatch ›
Trending
A first-of-its-kind study has examined the satellite record to see how the climate crisis is impacting all of the planet's ice.
- 'Ghost Forests' Are an Eerie Sign of Sea-Level Rise - EcoWatch ›
- Sea-Level Rise Takes Business Toll in North Carolina's Outer Banks ... ›
- Sea Level Rise Is Locked in Even If We Meet Paris Agreement ... ›
A Healthy Microbiome Builds a Strong Immune System That Could Help Defeat COVID-19
By Ana Maldonado-Contreras
Takeaways
- Your gut is home to trillions of bacteria that are vital for keeping you healthy.
- Some of these microbes help to regulate the immune system.
- New research, which has not yet been peer-reviewed, shows the presence of certain bacteria in the gut may reveal which people are more vulnerable to a more severe case of COVID-19.
You may not know it, but you have an army of microbes living inside of you that are essential for fighting off threats, including the virus that causes COVID-19.
How Do Resident Bacteria Keep You Healthy?
<p>Our immune defense is part of a complex biological response against harmful pathogens, such as viruses or bacteria. However, because our bodies are inhabited by trillions of mostly beneficial bacteria, virus and fungi, activation of our immune response is tightly regulated to distinguish between harmful and helpful microbes.</p><p>Our bacteria are spectacular companions diligently helping prime our immune system defenses to combat infections. A seminal study found that mice treated with antibiotics that eliminate bacteria in the gut exhibited an impaired immune response. These animals had low counts of virus-fighting white blood cells, weak antibody responses and poor production of a protein that is vital for <a href="https://doi.org/10.1073/pnas.1019378108" target="_blank">combating viral infection and modulating the immune response</a>.</p><p><a href="https://doi.org/10.1371/journal.pone.0184976" target="_blank" rel="noopener noreferrer">In another study</a>, mice were fed <em>Lactobacillus</em> bacteria, commonly used as probiotic in fermented food. These microbes reduced the severity of influenza infection. The <em>Lactobacillus</em>-treated mice did not lose weight and had only mild lung damage compared with untreated mice. Similarly, others have found that treatment of mice with <em>Lactobacillus</em> protects against different <a href="https://doi.org/10.1038/srep04638" target="_blank" rel="noopener noreferrer">subtypes of</a> <a href="https://doi.org/10.1038/s41598-017-17487-8" target="_blank" rel="noopener noreferrer">influenza</a> <a href="https://doi.org/10.1371/journal.ppat.1008072" target="_blank" rel="noopener noreferrer">virus</a> and human respiratory syncytial virus – the <a href="https://doi.org/10.1038/s41598-019-39602-7" target="_blank" rel="noopener noreferrer">major cause of viral bronchiolitis and pneumonia in children</a>.</p>Chronic Disease and Microbes
<p>Patients with chronic illnesses including Type 2 diabetes, obesity and cardiovascular disease exhibit a hyperactive immune system that fails to recognize a harmless stimulus and is linked to an altered gut microbiome.</p><p>In these chronic diseases, the gut microbiome lacks bacteria that activate <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">immune cells</a> that block the response against harmless bacteria in our guts. Such alteration of the gut microbiome is also observed in <a href="https://doi.org/10.1073/pnas.1002601107" target="_blank" rel="noopener noreferrer">babies delivered by cesarean section</a>, individuals consuming a poor <a href="https://doi.org/10.1038/nature12820" target="_blank" rel="noopener noreferrer">diet</a> and the <a href="https://doi.org/10.1038/nature11053" target="_blank" rel="noopener noreferrer">elderly</a>.</p><p>In the U.S., 117 million individuals – about half the adult population – <a href="https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/" target="_blank" rel="noopener noreferrer">suffer from Type 2 diabetes, obesity, cardiovascular disease or a combination of them</a>. That suggests that half of American adults carry a faulty microbiome army.</p><p>Research in my laboratory focuses on identifying gut bacteria that are critical for creating a balanced immune system, which fights life-threatening bacterial and viral infections, while tolerating the beneficial bacteria in and on us.</p><p>Given that diet affects the diversity of bacteria in the gut, <a href="https://www.umassmed.edu/nutrition/melody-trial-info/" target="_blank" rel="noopener noreferrer">my lab studies show how diet can be used</a> as a therapy for chronic diseases. Using different foods, people can shift their gut microbiome to one that boosts a healthy immune response.</p><p>A fraction of patients infected with SARS-CoV-2, the virus that causes COVID-19 disease, develop severe complications that require hospitalization in intensive care units. What do many of those patients have in common? <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm" target="_blank" rel="noopener noreferrer">Old age</a> and chronic diet-related diseases like obesity, Type 2 diabetes and cardiovascular disease.</p><p><a href="http://doi.org/10.1016/j.jada.2008.12.019" target="_blank" rel="noopener noreferrer">Black and Latinx people are disproportionately affected by obesity, Type 2 diabetes and cardiovascular disease</a>, all of which are linked to poor nutrition. Thus, it is not a coincidence that <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6933e1.htm" target="_blank" rel="noopener noreferrer">these groups have suffered more deaths from COVID-19</a> compared with whites. This is the case not only in the U.S. but also <a href="https://www.washingtonpost.com/world/europe/blacks-in-britain-are-four-times-as-likely-to-die-of-coronavirus-as-whites-data-show/2020/05/07/2dc76710-9067-11ea-9322-a29e75effc93_story.html" target="_blank" rel="noopener noreferrer">in Britain</a>.</p>Discovering Microbes That Predict COVID-19 Severity
<p>The COVID-19 pandemic has inspired me to shift my research and explore the role of the gut microbiome in the overly aggressive immune response against SARS-CoV-2 infection.</p><p>My colleagues and I have hypothesized that critically ill SARS-CoV-2 patients with conditions like obesity, Type 2 diabetes and cardiovascular disease exhibit an altered gut microbiome that aggravates <a href="https://theconversation.com/exercise-may-help-reduce-risk-of-deadly-covid-19-complication-ards-136922" target="_blank" rel="noopener noreferrer">acute respiratory distress syndrome</a>.</p><p>Acute respiratory distress syndrome, a life-threatening lung injury, in SARS-CoV-2 patients is thought to develop from a <a href="http://doi.org/10.1016/j.cytogfr.2020.05.003" target="_blank" rel="noopener noreferrer">fatal overreaction of the immune response</a> called a <a href="https://theconversation.com/blocking-the-deadly-cytokine-storm-is-a-vital-weapon-for-treating-covid-19-137690" target="_blank" rel="noopener noreferrer">cytokine storm</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">that causes an uncontrolled flood</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">of immune cells into the lungs</a>. In these patients, their own uncontrolled inflammatory immune response, rather than the virus itself, causes the <a href="http://doi.org/10.1007/s00134-020-05991-x" target="_blank" rel="noopener noreferrer">severe lung injury and multiorgan failures</a> that lead to death.</p><p>Several studies <a href="https://doi.org/10.1016/j.trsl.2020.08.004" target="_blank" rel="noopener noreferrer">described in one recent review</a> have identified an altered gut microbiome in patients with COVID-19. However, identification of specific bacteria within the microbiome that could predict COVID-19 severity is lacking.</p><p>To address this question, my colleagues and I recruited COVID-19 hospitalized patients with severe and moderate symptoms. We collected stool and saliva samples to determine whether bacteria within the gut and oral microbiome could predict COVID-19 severity. The identification of microbiome markers that can predict the clinical outcomes of COVID-19 disease is key to help prioritize patients needing urgent treatment.</p><p><a href="https://doi.org/10.1101/2021.01.05.20249061" target="_blank" rel="noopener noreferrer">We demonstrated</a>, in a paper which has not yet been peer reviewed, that the composition of the gut microbiome is the strongest predictor of COVID-19 severity compared to patient's clinical characteristics commonly used to do so. Specifically, we identified that the presence of a bacterium in the stool – called <em>Enterococcus faecalis</em>– was a robust predictor of COVID-19 severity. Not surprisingly, <em>Enterococcus faecalis</em> has been associated with <a href="https://doi.org/10.1053/j.gastro.2011.05.035" target="_blank" rel="noopener noreferrer">chronic</a> <a href="https://doi.org/10.1016/S0002-9440(10)61172-8" target="_blank" rel="noopener noreferrer">inflammation</a>.</p><p><em>Enterococcus faecalis</em> collected from feces can be grown outside of the body in clinical laboratories. Thus, an <em>E. faecalis</em> test might be a cost-effective, rapid and relatively easy way to identify patients who are likely to require more supportive care and therapeutic interventions to improve their chances of survival.</p><p>But it is not yet clear from our research what is the contribution of the altered microbiome in the immune response to SARS-CoV-2 infection. A recent study has shown that <a href="https://doi.org/10.1101/2020.12.11.416180" target="_blank" rel="noopener noreferrer">SARS-CoV-2 infection triggers an imbalance in immune cells</a> called <a href="https://doi.org/10.1111/imr.12170" target="_blank" rel="noopener noreferrer">T regulatory cells that are critical to immune balance</a>.</p><p>Bacteria from the gut microbiome are responsible for the <a href="https://doi.org/10.7554/eLife.30916.001" target="_blank" rel="noopener noreferrer">proper activation</a> <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">of those T-regulatory</a> <a href="https://doi.org/10.1038/nri.2016.36" target="_blank" rel="noopener noreferrer">cells</a>. Thus, researchers like me need to take repeated patient stool, saliva and blood samples over a longer time frame to learn how the altered microbiome observed in COVID-19 patients can modulate COVID-19 disease severity, perhaps by altering the development of the T-regulatory cells.</p><p>As a Latina scientist investigating interactions between diet, microbiome and immunity, I must stress the importance of better policies to improve access to healthy foods, which lead to a healthier microbiome. It is also important to design culturally sensitive dietary interventions for Black and Latinx communities. While a good-quality diet might not prevent SARS-CoV-2 infection, it can treat the underlying conditions related to its severity.</p><p><em><a href="https://theconversation.com/profiles/ana-maldonado-contreras-1152969" target="_blank">Ana Maldonado-Contreras</a> is an assistant professor of Microbiology and Physiological Systems at the University of Massachusetts Medical School.</em></p><p><em>Disclosure statement: Ana Maldonado-Contreras receives funding from The Helmsley Charitable Trust and her work has been supported by the American Gastroenterological Association. She received The Charles A. King Trust Postdoctoral Research Fellowship. She is also member of the Diversity Committee of the American Gastroenterological Association.</em></p><p><em style="">Reposted with permission from <a href="https://theconversation.com/a-healthy-microbiome-builds-a-strong-immune-system-that-could-help-defeat-covid-19-145668" target="_blank" rel="noopener noreferrer" style="">The Conversation</a>. </em></p>By Jeff Masters, Ph.D.
The New Climate War: the fight to take back our planet is the latest must-read book by leading climate change scientist and communicator Michael Mann of Penn State University.
- 12 New Books Explore Fresh Approaches to Act on Climate Change ... ›
- Dr. Michael Mann on Climate Denial: 'It's Impaired Our Ability to ... ›