Renewables Generate More Electricity Than Fossil Fuels in UK for First Time

By Simon Evans
During the three months of July, August and September, renewables generated an estimated total of 29.5 terawatt hours (TWh), compared with just 29.1TWh from fossil fuels, the analysis shows.
This is the first-ever quarter where renewables outpaced fossil fuels since the UK's first public electricity generating station opened in 1882. It is another symbolic milestone in the stunning transformation of the UK's electricity system over the past decade.
Nevertheless, a lack of progress in other parts of the economy means the UK remains far off track against its upcoming legally-binding carbon targets, let alone the recently adopted goal of net-zero greenhouse gas emissions by 2050.
Transformative Decade
At the start of this decade in 2010, the 288TWh generated from fossil fuels accounted for around three-quarters of the UK total. It was also more than 10 times as much electricity as the 26TWh that came from renewables.
Since then, electricity generation from renewable sources has more than quadrupled – and demand has fallen – leaving fossil fuels with a shrinking share of the total.
This shift is shown in the chart below, with the declining quarterly output from power stations burning coal, oil and gas in blue and rising generation from renewables in red.
(The quarterly chart also reflects the seasons, with demand higher in winter and lower in summer. Wind farm output is well matched with this cycle, as it tends to be windier in winter.)
Quarterly electricity generation in the UK between 2009 and the third quarter of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: BEIS Energy Trends and Carbon Brief analysis of data from BM Reports. Chart by Carbon Brief using Highcharts
The chart above shows that electricity generation from fossil fuels has halved since 2010, from 288TWh down to 142TWh in the most recent 12-month period.
Gas now contributes the vast majority of that shrinking total, as coal plants close down ahead of a planned phaseout in 2025. These ageing power stations were mostly built in the 1960s and 70s and are increasingly uneconomic to run due to CO2 prices, market forces and pollution rules.
In the third quarter of 2019, some 39 percent of UK electricity generation was from coal, oil and gas, including 38% from gas and less than 1 percent from coal and oil combined.
Another 40 percent came from renewables, including 20 percent from wind, 12 percent from biomass and 6 percent from solar. Nuclear contributed most of the remainder, generating 19 percent of the total.
While it is unlikely that renewables will generate more electricity than fossil fuels during the full year of 2019, it is now a question of when – rather than if – this further milestone will be passed.
This summer, National Grid predicted that zero-carbon sources of electricity – wind, nuclear, solar and hydro, but not biomass – would generate more electricity than fossil fuels during 2019. Carbon Brief's analysis through to the third quarter of the year is in line with this forecast.
New Capacity
Over the past year, the most significant reason for rising renewable generation has been an increase in capacity as new offshore wind farms have opened. The 1,200 megawatt (MW) Hornsea One project was completed in October, becoming the world's largest offshore wind farm. The 588MW Beatrice offshore wind farm was completed in Q2 of this year.
These schemes add to the more than 2,100MW of offshore capacity that started operating during 2018. Further capacity is already being built, including the 714MW East Anglia One project that started generating electricity this year and will be completed in 2020.
In total, government contracts for offshore wind will take capacity from nearly 8,500MW today to around 20,000MW by the mid-2020s. The government and industry are jointly aiming for at least 30,000MW of offshore wind capacity by 2030, with two further contract auctions already expected.
In September, the latest auction round produced record-low deals for offshore wind farms that will generate electricity more cheaply than expected market prices – and potentially below the cost of running existing gas plants.
Other contributors to the recent increase in renewable generation include the opening of the 420MW Lynemouth biomass plant in Northumberland last year and the addition of hundreds of megawatts of new onshore wind and solar farms. (Another new 299MW biomass plant being built on Teesside, with a scheduled opening in early 2020, is facing "major delays".)
According to the Department of Business, Energy and Industrial Strategy (BEIS), the rise in renewable output during the first half of 2019 was down to these increases in capacity, with weather conditions not unusual for the time of year.
Some two-thirds of electricity generated from biomass in the UK comes from "plant biomass", primarily wood pellets burnt at Lynemouth and the Drax plant in Yorkshire. The remainder comes from an array of smaller sites based on landfill gas, sewage gas or anaerobic digestion.
The Committee on Climate Change says the UK should "move away" from large-scale biomass power plants, once existing subsidy contracts for Drax and Lynemouth expire in 2027.
Using biomass to generate electricity is not zero-carbon and in some circumstances could lead to higher emissions than from fossil fuels. Moreover, there are more valuable uses for the world's limited supply of biomass feedstock, the CCC says, including carbon sequestration and hard-to-abate sectors with few alternatives.
In terms of fossil-fuel generating capacity, the UK's remaining coal plants are rapidly closing down, well ahead of a 2025 deadline to phase out unabated burning of the fuel. By March 2020, just four coal plants will remain in the UK.
Utility firms have plans to build up to 30,000MW of new gas capacity – including 3,600MW at Drax recently given government planning approval – despite the fact that government projections suggest only around 6,000MW might be needed by 2035.
It is unlikely that all of the planned new gas capacity will get built. The schemes are generally reliant on winning contracts under the UK's capacity market, which is designed to ensure electricity supply is always sufficient to meet demand.
The rise of renewables means that gas generation is likely to continue falling in the UK, whether or not this new capacity gets built. Nevertheless, the UK is unlikely to meet its legally binding goal of cutting overall emissions to net-zero by 2050, unless progress in the electricity sector is matched by reductions in other parts of the UK economy, such as heating and transport.
Consecutive Months
Carbon Brief's electricity-sector analysis shows that renewables are also estimated to have generated more electricity than fossil fuels during the individual months of August and September, the first time there have been two consecutive such months.
Previously, renewables beat fossil fuels in September 2018 – the first-ever whole month – and then again in March 2019. This means that there have only ever been four months where renewables outpaced fossil generation, of which three have been this year and two in the last two months.
This is shown in the chart, below, which also highlights the greater month-to-month variability in electricity generation and demand, which is overlaid on top of the broader seasonal cycles.
Monthly electricity generation in the UK between 2012 and the third quarter of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts
In the first three quarters of 2019, renewables outpaced fossil fuels on 103 of the 273 individual days, Carbon Brief analysis suggests. This is more than one-third of the days in the year so far and includes 40 of the 91 days in the third quarter of 2019.
(Although this is not a majority of days, the aggregate output during the quarter was higher for renewables. This is because their excess over fossil fuels was large on some days.)
As expected from the monthly aggregates in the chart, above, these days with higher renewable generation are concentrated in March and the third quarter of 2019, as shown in the chart, below.
Daily electricity generation in the UK during the first three quarters of 2019, in terawatt hours, with fossil-fuel output shown with a blue line (coal, oil and gas) and renewables shown in red (wind, biomass, solar and hydro). Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts.
The total of 103 days with higher renewable electricity generation than from fossil fuels in the first three quarters of the year is far in excess of the 67 such days by the same point in 2018.
This is shown in the chart, below, which also highlights the fact that there had never been any days with higher renewable generation until 2015.
Cumulative count of days each year when electricity generation from renewables was higher than that from fossil fuels. Prior to 2015 there were no days when renewables outpaced fossil fuels. Source: Carbon Brief analysis of data from BEIS Energy Trends and BM Reports. Chart by Carbon Brief using Highcharts.
There have already been nearly as many higher renewable days in the first three quarters of 2019, at 103, as there were in the whole of 2018, which saw 107 such days. There were only 58 such days in 2017, just 16 in 2016 and 12 in 2015. The first ever day when UK renewables generated more electricity than fossil fuels was 11 April 2015.
Methodology
The figures in the article are from Carbon Brief analysis of data from BEIS Energy Trends chapter 5 and chapter 6, as well as from BM Reports. The figures from BM Reports are for electricity supplied to the grid in Great Britain only and are adjusted to include Northern Ireland.
In Carbon Brief's analysis, the BM Reports numbers are also adjusted to account for electricity used by power plants on site and for generation by plants not connected to the high-voltage national grid. This includes many onshore wind farms, as well as industrial gas combined heat and power plants and those burning landfill gas, waste or sewage gas.
By design, the Carbon Brief analysis is intended to align as closely as possible to the official government figures on electricity generated in the UK, reported in BEIS Energy Trends table 5.1. Briefly, the raw data for each fuel is adjusted with a multiplier, derived from the ratio between the reported BEIS numbers and unadjusted figures for previous quarters.
Carbon Brief's method of analysis has been verified against published BEIS figures using "hindcasting". This shows the estimates for total electricity generation from fossil fuels or renewables to have been within ±3% of the BEIS number in each quarter since Q4 2017. (Data before then is not sufficient to carry out the Carbon Brief analysis.)
For example, in the second quarter of 2019, a Carbon Brief hindcast estimates gas generation at 33.1TWh, whereas the published BEIS figure was 34.0TWh. Similarly, it produces an estimate of 27.4TWh for renewables, against a BEIS figure of 27.1TWh.
The Carbon Brief estimated totals for fossil fuels and renewables are very close in Q3 2019, coming within 0.5TWh of each other. This means that despite the relatively low level of uncertainty in the estimates, their relative position could be reversed in the official BEIS data.
This serves to emphasize the fact that the broader trend of decline for fossil fuels and an increase for renewables is of far greater significance than the precise figures for any individual quarter.
In contrast to Carbon Brief's analysis, figures published by consultancy EnAppSys for the third quarter of 2019 suggest that fossil fuels generated slightly more electricity than renewables. There are several reasons for this difference.
First, the company's analysis is for Great Britain only, whereas Carbon Brief's covers the UK overall. Second, it reports on electricity "supplied" in the country, including imports, whereas Carbon Brief estimates the amount of electricity "generated" within the UK only.
Third, Carbon Brief's analysis is, by design, aligned with the quarterly BEIS Energy Trends data for electricity generation, whereas EnAppSys uses its own approach.
For comparison, EnAppSys reported for the second quarter of 2019 that 28.3TWh was supplied in GB from gas, whereas BEIS reports that 34.0TWh was generated in the UK. Similarly EnAppSys reported 23.1TWh coming from renewables, against a BEIS figure of 27.1TWh.
Reposted with permission from our media associate Carbon Brief.
- UK Achieves First Coal-Free Week Since Industrial Revolution ... ›
- Britain Just Went Nearly Three Weeks Without Coal, a New Record ... ›
- Clean Power Overtaking Fossil Fuels in Britain in 2019 - EcoWatch ›
Cities Can Help Migrating Birds on Their Way By Planting More Trees and Turning Lights Off at Night
By Frank La Sorte and Kyle Horton
Millions of birds travel between their breeding and wintering grounds during spring and autumn migration, creating one of the greatest spectacles of the natural world. These journeys often span incredible distances. For example, the Blackpoll warbler, which weighs less than half an ounce, may travel up to 1,500 miles between its nesting grounds in Canada and its wintering grounds in the Caribbean and South America.
Blackpoll warbler abundance in breeding, non-breeding and migration seasons. Cornell Lab of Ornithology / CC BY-ND
<p>For many species, these journeys take place at night, when skies typically are calmer and predators are less active. Scientists do not have a good understanding yet of how birds navigate effectively at night over long distances.</p><p><span></span>We study bird migration and how it is being affected by factors ranging from <a href="https://scholar.google.com/citations?user=S04C3UMAAAAJ&hl=en" target="_blank">climate change</a> to <a href="https://scholar.google.com/citations?user=pPk38-8AAAAJ&hl=en" target="_blank">artificial light at night</a>. In a recent study, we used millions of bird observations by citizen scientists to document the <a href="https://doi.org/10.1016/j.envpol.2020.116085" target="_blank">occurrence of migratory bird species in 333 U.S. cities</a> during the winter, spring, summer and autumn.</p>Blackpoll warbler. PJTurgeon / Wikipedia
<p>We used this information to determine how the number of migratory bird species varies based on each city's level of <a href="https://www.britannica.com/science/light-pollution" target="_blank" rel="noopener noreferrer">light pollution</a> – brightening of the night sky caused by artificial light sources, such as buildings and streetlights. We also explored how species numbers vary based on the quantity of tree canopy cover and impervious surface, such as concrete and asphalt, within each city. Our findings show that cities can help migrating birds by planting more trees and reducing light pollution, especially during spring and autumn migration.</p>Declining Bird Populations
<p>Urban areas contain numerous dangers for migratory birds. The biggest threat is the risk of <a href="https://doi.org/10.1650/CONDOR-13-090.1" target="_blank">colliding with buildings or communication towers</a>. Many migratory bird populations have <a href="http://dx.doi.org/10.1126/science.aaw1313" target="_blank">declined over the past 50 years</a>, and it is possible that light pollution from cities is contributing to these losses.</p><p>Scientists widely agree that light pollution can <a href="https://doi.org/10.1073/pnas.1708574114" target="_blank">severely disorient migratory birds</a> and make it hard for them to navigate. Studies have shown that birds will cluster around brightly lit structures, much like insects flying around a porch light at night. Cities are the <a href="https://doi.org/10.1002/fee.2029" target="_blank" rel="noopener noreferrer">primary source of light pollution for migratory birds</a>, and these species tend to be more abundant within cities <a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13792" target="_blank" rel="noopener noreferrer">during migration</a>, especially in <a href="https://doi.org/10.1016/j.landurbplan.2020.103892" target="_blank" rel="noopener noreferrer">city parks</a>.</p>Composite image of the continental U.S. at night from satellite photos. NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from Miguel Román, NASA's Goddard Space Flight Center
The Power of Citizen Science
<p>It's not easy to observe and document bird migration, especially for species that migrate at night. The main challenge is that many of these species are very small, which limits scientists' ability to use electronic tracking devices.</p><p>With the growth of the internet and other information technologies, new data resources are becoming available that are making it possible to overcome some of these challenges. <a href="https://doi.org/10.1038/d41586-018-07106-5" target="_blank">Citizen science initiatives</a> in which volunteers use online portals to enter their observations of the natural world have become an important resource for researchers.</p><p>One such initiative, <a href="https://ebird.org/home" target="_blank" rel="noopener noreferrer">eBird</a>, allows bird-watchers around the globe to share their observations from any location and time. This has produced one of the <a href="https://doi.org/10.1111/ecog.04632" target="_blank" rel="noopener noreferrer">largest ecological citizen-science databases in the world</a>. To date, eBird contains over 922 million bird observations compiled by over 617,000 participants.</p>Light Pollution Both Attracts and Repels Migratory Birds
<p>Migratory bird species have evolved to use certain migration routes and types of habitat, such as forests, grasslands or marshes. While humans may enjoy seeing migratory birds appear in urban areas, it's generally not good for bird populations. In addition to the many hazards that exist in urban areas, cities typically lack the food resources and cover that birds need during migration or when raising their young. As scientists, we're concerned when we see evidence that migratory birds are being drawn away from their traditional migration routes and natural habitats.</p><p>Through our analysis of eBird data, we found that cities contained the greatest numbers of migratory bird species during spring and autumn migration. Higher levels of light pollution were associated with more species during migration – evidence that light pollution attracts migratory birds to cities across the U.S. This is cause for concern, as it shows that the influence of light pollution on migratory behavior is strong enough to increase the number of species that would normally be found in urban areas.</p><p>In contrast, we found that higher levels of light pollution were associated with fewer migratory bird species during the summer and winter. This is likely due to the scarcity of suitable habitat in cities, such as large forest patches, in combination with the adverse affects of light pollution on bird behavior and health. In addition, during these seasons, migratory birds are active only during the day and their populations are largely stationary, creating few opportunities for light pollution to attract them to urban areas.</p>Trees and Pavement
<p>We found that tree canopy cover was associated with more migratory bird species during spring migration and the summer. Trees provide important habitat for migratory birds during migration and the breeding season, so the presence of trees can have a strong effect on the number of migratory bird species that occur in cities.</p><p>Finally, we found that higher levels of impervious surface were associated with more migratory bird species during the winter. This result is somewhat surprising. It could be a product of the <a href="https://www.epa.gov/heatislands" target="_blank">urban heat island effect</a> – the fact that structures and paved surfaces in cities absorb and reemit more of the sun's heat than natural surfaces. Replacing vegetation with buildings, roads and parking lots can therefore make cities significantly warmer than surrounding lands. This effect could reduce cold stress on birds and increase food resources, such as insect populations, during the winter.</p><p>Our research adds to our understanding of how conditions in cities can both help and hurt migratory bird populations. We hope that our findings will inform urban planning initiatives and strategies to reduce the harmful effects of cities on migratory birds through such measures as <a href="https://www.arborday.org/programs/treecityusa/index.cfm" target="_blank" rel="noopener noreferrer">planting more trees</a> and initiating <a href="https://aeroecolab.com/uslights" target="_blank" rel="noopener noreferrer">lights-out programs</a>. Efforts to make it easier for migratory birds to complete their incredible journeys will help maintain their populations into the future.</p><p><em><span style="background-color: initial;"><a href="https://theconversation.com/profiles/frank-la-sorte-1191494" target="_blank">Frank La Sorte</a> is a r</span>esearch associate at the </em><em>Cornell Lab of Ornithology, Cornell University. <a href="https://theconversation.com/profiles/kyle-horton-1191498" target="_blank">Kyle Horton</a> is an assistant professor of Fish, Wildlife, and Conservation Biology at the Colorado State University.</em></p><p><em></em><em>Disclosure statement: Frank La Sorte receives funding from The Wolf Creek Charitable Foundation and the National Science Foundation (DBI-1939187). K</em><em>yle Horton does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.</em></p><p><em>Reposted with permission from <a href="https://theconversation.com/cities-can-help-migrating-birds-on-their-way-by-planting-more-trees-and-turning-lights-off-at-night-152573" target="_blank">The Conversation</a>. </em></p>EcoWatch Daily Newsletter
By Lynne Peeples
Editor's note: This story is part of a nine-month investigation of drinking water contamination across the U.S. The series is supported by funding from the Park Foundation and Water Foundation. Read the launch story, "Thirsting for Solutions," here.
In late September 2020, officials in Wrangell, Alaska, warned residents who were elderly, pregnant or had health problems to avoid drinking the city's tap water — unless they could filter it on their own.
Unintended Consequences
<p>Chemists first discovered disinfection by-products in treated drinking water in the 1970s. The trihalomethanes they found, they determined, had resulted from the reaction of chlorine with natural organic matter. Since then, scientists have identified more than 700 additional disinfection by-products. "And those only represent a portion. We still don't know half of them," says Richardson, whose lab has identified hundreds of disinfection by-products. </p>What’s Regulated and What’s Not?
<p>The U.S. Environmental Protection Agency (EPA) currently regulates 11 disinfection by-products — including a handful of trihalomethanes (THM) and haloacetic acids (HAA). While these represent only a small fraction of all disinfection by-products, EPA aims to use their presence to indicate the presence of other disinfection by-products. "The general idea is if you control THMs and HAAs, you implicitly or by default control everything else as well," says Korshin.</p><p>EPA also requires drinking water facilities to use techniques to reduce the concentration of organic materials before applying disinfectants, and regulates the quantity of disinfectants that systems use. These rules ultimately can help control levels of disinfection by-products in drinking water.</p>Click the image for an interactive version of this chart on the Environmental Working Group website.
<p>Still, some scientists and advocates argue that current regulations do not go far enough to protect the public. Many question whether the government is regulating the right disinfection by-products, and if water systems are doing enough to reduce disinfection by-products. EPA is now seeking public input as it considers potential revisions to regulations, including the possibility of regulating additional by-products. The agency held a <a href="https://www.epa.gov/dwsixyearreview/potential-revisions-microbial-and-disinfection-byproducts-rules" target="_blank">two-day public meeting</a> in October 2020 and plans to hold additional public meetings throughout 2021.</p><p>When EPA set regulations on disinfection by-products between the 1970s and early 2000s, the agency, as well as the scientific community, was primarily focused on by-products of reactions between organics and chlorine — historically the most common drinking water disinfectant. But the science has become increasingly clear that these chlorinated chemicals represent a fraction of the by-product problem.</p><p>For example, bromide or iodide can get caught up in the reaction, too. This is common where seawater penetrates a drinking water source. By itself, bromide is innocuous, says Korshin. "But it is extremely [reactive] with organics," he says. "As bromide levels increase with normal treatment, then concentrations of brominated disinfection by-products will increase quite rapidly."</p><p><a href="https://pubmed.ncbi.nlm.nih.gov/15487777/" target="_blank">Emerging</a> <a href="https://pubs.acs.org/doi/10.1021/acs.est.7b05440" target="_blank" rel="noopener noreferrer">data</a> indicate that brominated and iodinated by-products are potentially more harmful than the regulated by-products.</p><p>Almost half of the U.S. population lives within 50 miles of either the Atlantic or Pacific coasts, where saltwater intrusion can be a problem for drinking water supplies. "In the U.S., the rule of thumb is the closer to the sea, the more bromide you have," says Korshin, noting there are also places where bromide naturally leaches out from the soil. Still, some coastal areas tend to be spared. For example, the city of Seattle's water comes from the mountains, never making contact with seawater and tending to pick up minimal organic matter.</p><p>Hazardous disinfection by-products can also be an issue with desalination for drinking water. "As <a href="https://ensia.com/features/can-saltwater-quench-our-growing-thirst/" target="_blank" rel="noopener noreferrer">desalination</a> practices become more economical, then the issue of controlling bromide becomes quite important," adds Korshin.</p>Other Hot Spots
<p>Coastal areas represent just one type of hot spot for disinfection by-products. Agricultural regions tend to send organic matter — such as fertilizer and animal waste — into waterways. Areas with warmer climates generally have higher levels of natural organic matter. And nearly any urban area can be prone to stormwater runoff or combined sewer overflows, which can contain rainwater as well as untreated human waste, industrial wastewater, hazardous materials and organic debris. These events are especially common along the East Coast, notes Sydney Evans, a science analyst with the nonprofit Environmental Working Group (EWG, a collaborator on <a href="https://ensia.com/ensia-collections/troubled-waters/" target="_blank">this reporting project</a>).</p><p>The only drinking water sources that might be altogether free of disinfection by-products, suggests Richardson, are private wells that are not treated with disinfectants. She used to drink water from her own well. "It was always cold, coming from great depth through clay and granite," she says. "It was fabulous."</p><p>Today, Richardson gets her water from a city system that uses chloramine.</p>Toxic Treadmill
<p>Most community water systems in the U.S. use chlorine for disinfection in their treatment plant. Because disinfectants are needed to prevent bacteria growth as the water travels to the homes at the ends of the distribution lines, sometimes a second round of disinfection is also added in the pipes.</p><p>Here, systems usually opt for either chlorine or chloramine. "Chloramination is more long-lasting and does not form as many disinfection by-products through the system," says Steve Via, director of federal relations at the American Water Works Association. "Some studies show that chloramination may be more protective against organisms that inhabit biofilms such as Legionella."</p>Alternative Approaches
<p>When he moved to the U.S. from Germany, Prasse says he immediately noticed the bad taste of the water. "You can taste the chlorine here. That's not the case in Germany," he says.</p><p>In his home country, water systems use chlorine — if at all — at lower concentrations and at the very end of treatment. In the Netherlands, <a href="https://dwes.copernicus.org/articles/2/1/2009/dwes-2-1-2009.pdf" target="_blank">chlorine isn't used at all</a> as the risks are considered to outweigh the benefits, says Prasse. He notes the challenge in making a convincing connection between exposure to low concentrations of disinfection by-products and health effects, such as cancer, that can occur decades later. In contrast, exposure to a pathogen can make someone sick very quickly.</p><p>But many countries in Europe have not waited for proof and have taken a precautionary approach to reduce potential risk. The emphasis there is on alternative approaches for primary disinfection such as ozone or <a href="https://www.pbs.org/wgbh/nova/article/eco-friendly-way-disinfect-water-using-light/" target="_blank" rel="noopener noreferrer">ultraviolet light</a>. Reverse osmosis is among the "high-end" options, used to remove organic and inorganics from the water. While expensive, says Prasse, the method of forcing water through a semipermeable membrane is growing in popularity for systems that want to reuse wastewater for drinking water purposes.</p><p>Remucal notes that some treatment technologies may be good at removing a particular type of contaminant while being ineffective at removing another. "We need to think about the whole soup when we think about treatment," she says. What's more, Remucal explains, the mixture of contaminants may impact the body differently than any one chemical on its own. </p><p>Richardson's preferred treatment method is filtering the water with granulated activated carbon, followed by a low dose of chlorine.</p><p>Granulated activated carbon is essentially the same stuff that's in a household filter. (EWG recommends that consumers use a <a href="https://www.ewg.org/tapwater/reviewed-disinfection-byproducts.php#:~:text=EWG%20recommends%20using%20a%20home,as%20trihalomethanes%20and%20haloacetic%20acids." target="_blank" rel="noopener noreferrer">countertop carbon filter</a> to reduce levels of disinfection by-products.) While such a filter "would remove disinfection by-products after they're formed, in the plant they remove precursors before they form by-products," explains Richardson. She coauthored a <a href="https://pubs.acs.org/doi/10.1021/acs.est.9b00023" target="_blank" rel="noopener noreferrer">2019 paper</a> that concluded the treatment method is effective in reducing a wide range of regulated and unregulated disinfection by-products.</p><br>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992, and is still one of relatively few full-scale plants that uses the technology. Courtesy of Greater Cincinnati Water Works.
<p>Despite the technology and its benefits being known for decades, relatively few full-scale plants use granulated active carbon. They often cite its high cost, Richardson says. "They say that, but the city of Cincinnati [Ohio] has not gone bankrupt using it," she says. "So, I'm not buying that argument anymore."</p><p>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992. On a video call in December, Jeff Swertfeger, the superintendent of Greater Cincinnati Water Works, poured grains of what looks like black sand out of a glass tube and into his hand. It was actually crushed coal that has been baked in a furnace. Under a microscope, each grain looks like a sponge, said Swertfeger. When water passes over the carbon grains, he explained, open tunnels and pores provide extensive surface area to absorb contaminants.</p><p>While the granulated activated carbon initially was installed to address chemical spills and other industrial contamination concerns in the Ohio River, Cincinnati's main drinking water source, Swertfeger notes that the substance has turned out to "remove a lot of other stuff, too," including <a href="https://ensia.com/features/drinking-water-contamination-pfas-health/" target="_blank" rel="noopener noreferrer">PFAS</a> and disinfection by-product precursors.</p><p>"We use about one-third the amount of chlorine as we did before. It smells and tastes a lot better," he says. "The use of granulated activated carbon has resulted in lower disinfection by-products across the board."</p><p>Richardson is optimistic about being able to reduce risks from disinfection by-products in the future. "If we're smart, we can still kill those pathogens and lower our chemical disinfection by-product exposure at the same time," she says.</p><p><em>Reposted with permission from </em><em><a href="https://ensia.com/features/drinking-water-disinfection-byproducts-pathogens/" target="_blank">Ensia</a>. </em><a href="https://www.ecowatch.com/r/entryeditor/2649953730#/" target="_self"></a></p>Trending
At a time of impending global food scarcity, cell-based meats and seafood have been heralded as the future of food.
- Most Meat Will Be Plant-Based or Lab-Grown in 20 Years, Analysts ... ›
- Lab-Grown Meat Debate Overlooks Cows' Range of Use Worldwide ... ›
- Will Plant-Based Meat Become the New Fast Food? - EcoWatch ›
One city in New Zealand knows what its priorities are.
Dunedin, the second largest city on New Zealand's South Island, has closed a popular road to protect a mother sea lion and her pup, The Guardian reported.
piyaset / iStock / Getty Images Plus
In an alarming new study, scientists found that climate change is already harming children's diets.
- No Country Is Protecting Children's Health, Major Study Finds ... ›
- 'Every Child Born Today Will Be Profoundly Affected by Climate ... ›