
In addition to a long list of incredible benefits for farmers and their crops, regenerative agriculture practices help us fight the climate crisis by pulling carbon from the atmosphere and sequestering it in the ground.
We know that to solve the climate crisis, business as usual will not cut it. Not in electricity production. Not in industry. Not in transportation. And certainly not in agriculture.
The agriculture sector is one of the biggest emitters of CO2, the greenhouse gas (GHG) most responsible for the changes we are seeing in our climate today. Together with forestry and other land use, agriculture is responsible for just under 25 percent of all human-created GHG emissions.
But it also has a vital role to play in helping us end this crisis, and create a safe, sustainable future without carbon pollution. One where we can provide our booming world population with fresh, healthy food grown in a sustainable soil ecosystem.
Sure, it may seem like a contradiction. So don't take it from us – take it from the Intergovernmental Panel on Climate Change (IPCC): "Leveraging the mitigation potential in the [Agriculture, Forestry and Other Land Use] sector is extremely important in meeting emission reduction targets."
But how?
We've got two words for you: regenerative agriculture.
How it Works
In short, regenerative agriculture is a system of farming principles and practices that seeks to rehabilitate and enhance the entire ecosystem of the farm by placing a heavy premium on soil health with attention also paid to water management, fertilizer use, and more. It is a method of farming that "improves the resources it uses, rather than destroying or depleting them," according to the Rodale Institute.
A great deal of emphasis is placed on looking holistically at the agro-ecosystem. Key techniques include:
- Conservation tillage: Plowing and tillage dramatically erode soil and release large amounts of carbon dioxide into the atmosphere. They also can result in the kind of bare or compacted soil that creates a hostile environment for important soil microbes. By adopting low- or no-till practices, farmers minimize physical disturbance of the soil, and over time increase levels of soil organic matter, creating healthier, more resilient environments for plants to thrive, as well as keeping more and more carbon where it belongs.
- Diversity: Different plants release different carbohydrates (sugars) through their roots, and various microbes feed on these carbs and return all sorts of different nutrients back to the plant and the soil. By increasing the plant diversity of their fields, farmers help create the rich, varied, and nutrient-dense soils that lead to more productive yields.
- Rotation and cover crops: Left exposed to the elements, soil will erode and the nutrients necessary for successful plant growth will either dry out or quite literally wash away. At the same time, planting the same plants in the same location can lead to a buildup of some nutrients and a lack of others. But by rotating crops and deploying cover crops strategically, farms and gardens can infuse soils with more and more (and more diverse) soil organic matter, often while avoiding disease and pest problems naturally. Always remember, bare soil is bad soil.
- Mess with it less: In addition to minimizing physical disturbance, regenerative agriculture practitioners also often seek to be cautious about chemical or biological activities that also can damage long-term soil health. Misapplication of fertilizers and other soil amendments can disrupt the natural relationship between microorganisms and plant roots.
The overriding theme: If you take care of your soil, it will take care of you.
According to Kiss the Ground, a nonprofit organization devoted to sustainable farming practices that improve soil health, "If regenerative means: 'renewal, restoration, and growth of cells, organisms, and ecosystems,' or 'renewal or restoration of a body, bodily part, or biological system (as in a forest) after injury or as a normal process,' then regenerative agriculture is agriculture that is doing just that."
The benefits of doing so are numerous: Regenerative agriculture practices increase soil biodiversity and organic matter, leading to more resilient soils that can better withstand climate change impacts like flooding and drought. Healthy soils beget strong yields and nutrient-rich crops. It also diminishes erosion and runoff, leading to improved water quality on and off the farm.
Importantly, regenerative agriculture practices also help us fight the climate crisis by pulling carbon from the atmosphere and sequestering it in the ground. (More on that below.)
The Climate Connection
The health and vitality of soil everywhere, from the smallest backyard garden to the largest Midwestern farm, plays an integral role in food production — and it's threatened by the climate crisis.
In addition to rising temperatures that are themselves changing where and how things can be grown, the climate crisis has fundamentally altered the water cycle around the world. The result is shifting precipitation patterns and increased evaporation that causes more-frequent powerful rainfall events and more severe droughts. In many areas, rainfall has become either increasingly abundant or in desperately short supply, relative to longtime averages. It's a classic case of feast or famine.
Extreme downpours can lead to polluted runoff and erosion because the ground simply isn't able to absorb the precipitation at the rate it's falling. And at a certain point of inundation, plants can drown. On the other end of the spectrum, less stable precipitation together with increased heat is causing more and more drought, and in extreme circumstances near-desertification, leading to a complete loss of farm production in some areas.
So, when it comes to agriculture, climate change is doing what it does best: exacerbating existing problems to the point of crisis. But if a farmer is using regenerative methods and not disturbing the soil, he or she is instead mitigating climate change effects by building organic matter. And the more organic matter you have in the soil, the more water-holding capacity you have.
Not only does adopting regenerative agriculture practices help farmers deal with current climate change impacts by making their farms more resilient and adaptive to what is happening around them now; it allows them to take action to fight it long-term by being part of a larger solution to the crisis, through carbon sequestration.
Farms Are Making the Switch
Regenerative agriculture allows farmers to play an active role in mitigating an existential threat to their livelihoods.
"We don't have to wait for technological wizardry: regenerative organic agriculture can substantially mitigate climate change now," Rodale Institute writes.
When plants photosynthesize, they take carbon dioxide from the air and — using the sun's energy, water, and nutrients from the soil — transform it into carbon the plant uses to grow leaves, stems, and roots. The excess carbon created through this process is transported down the plant and is stored in the surrounding soil, sequestering the carbon in the ground. This carbon in the soil is known as soil organic carbon and it feeds microbes and fungi, which in turn provide nutrients for the plant. Soil organic carbon is the main component of soil organic matter, providing more structure to the soil and allowing it to store more water.
Carbon can remain stored in soils for thousands of years — or it can be quickly released back into the atmosphere through farm practices like plowing and tillage, where soil is prepared for planting by mechanical agitation methods such as digging, stirring, and overturning.
For farmers, regenerative agriculture is thus a win-win — it's an approach that leads to better, more resilient crops grown using sustainable methods that at the same time fight a crisis that presents a threat to all agriculture.
And that's why some of the biggest brands in the world are going all in.
General Mills, makers of some of your favorite cereals, granola bars, and other foods, is taking a multipronged approach to its support of regenerative agriculture. They've partnered with other organizations to develop resources and training to help farmers work toward the widespread adoption of soil health practices, including plans for "2 and 3-day soil health academies where famers will receive education from leading technical experts" and a verified regenerative sourcing program for some of its brands that will "allow consumers to easily identify food that has been sourced from farms verified to increase water, soil, and climate health."
Learn More
In the end, Modern Farmer sums it up best: "This is how land should be taken care of and food should be grown – with benefits for the environment and the consumer."
It's just that simple.
Read more about the climate crisis' effect on the health of our soil – and the future of our food – by downloading our free e-book, Right Under Your Feet: Soil Health and the Climate Crisis. In it, we get you the facts on:
- The impact of climate change on soil health.
- What's at stake.
- What you can do to support a world where we can provide people with fresh, healthy food grown in a sustainable soil ecosystem.
A rare yellow penguin has been photographed for what is believed to be the first time.
- World-Renowned Photographer Documents Most Remote ... ›
- This Penguin Colony Has Fallen by 77% on Antarctic Islands ... ›
EcoWatch Daily Newsletter
By Stuart Braun
We spend 90% of our time in the buildings where we live and work, shop and conduct business, in the structures that keep us warm in winter and cool in summer.
But immense energy is required to source and manufacture building materials, to power construction sites, to maintain and renew the built environment. In 2019, building operations and construction activities together accounted for 38% of global energy-related CO2 emissions, the highest level ever recorded.
- Could IKEA's New Tiny House Help Fight the Climate Crisis ... ›
- Los Angeles City-Owned Buildings to Go 100% Carbon Free ... ›
- New Jersey Will Be First State to Require Building Permits to ... ›
Trending
By Eric Tate and Christopher Emrich
Disasters stemming from hazards like floods, wildfires, and disease often garner attention because of their extreme conditions and heavy societal impacts. Although the nature of the damage may vary, major disasters are alike in that socially vulnerable populations often experience the worst repercussions. For example, we saw this following Hurricanes Katrina and Harvey, each of which generated widespread physical damage and outsized impacts to low-income and minority survivors.
Mapping Social Vulnerability
<p>Figure 1a is a typical map of social vulnerability across the United States at the census tract level based on the Social Vulnerability Index (SoVI) algorithm of <a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/1540-6237.8402002" target="_blank"><em>Cutter et al.</em></a> [2003]. Spatial representation of the index depicts high social vulnerability regionally in the Southwest, upper Great Plains, eastern Oklahoma, southern Texas, and southern Appalachia, among other places. With such a map, users can focus attention on select places and identify population characteristics associated with elevated vulnerabilities.</p>Fig. 1. (a) Social vulnerability across the United States at the census tract scale is mapped here following the Social Vulnerability Index (SoVI). Red and pink hues indicate high social vulnerability. (b) This bivariate map depicts social vulnerability (blue hues) and annualized per capita hazard losses (pink hues) for U.S. counties from 2010 to 2019.
<p>Many current indexes in the United States and abroad are direct or conceptual offshoots of SoVI, which has been widely replicated [e.g., <a href="https://link.springer.com/article/10.1007/s13753-016-0090-9" target="_blank"><em>de Loyola Hummell et al.</em></a>, 2016]. The U.S. Centers for Disease Control and Prevention (CDC) <a href="https://www.atsdr.cdc.gov/placeandhealth/svi/index.html" target="_blank">has also developed</a> a commonly used social vulnerability index intended to help local officials identify communities that may need support before, during, and after disasters.</p><p>The first modeling and mapping efforts, starting around the mid-2000s, largely focused on describing spatial distributions of social vulnerability at varying geographic scales. Over time, research in this area came to emphasize spatial comparisons between social vulnerability and physical hazards [<a href="https://doi.org/10.1007/s11069-009-9376-1" target="_blank"><em>Wood et al.</em></a>, 2010], modeling population dynamics following disasters [<a href="https://link.springer.com/article/10.1007%2Fs11111-008-0072-y" target="_blank" rel="noopener noreferrer"><em>Myers et al.</em></a>, 2008], and quantifying the robustness of social vulnerability measures [<a href="https://doi.org/10.1007/s11069-012-0152-2" target="_blank" rel="noopener noreferrer"><em>Tate</em></a>, 2012].</p><p>More recent work is beginning to dissolve barriers between social vulnerability and environmental justice scholarship [<a href="https://doi.org/10.2105/AJPH.2018.304846" target="_blank" rel="noopener noreferrer"><em>Chakraborty et al.</em></a>, 2019], which has traditionally focused on root causes of exposure to pollution hazards. Another prominent new research direction involves deeper interrogation of social vulnerability drivers in specific hazard contexts and disaster phases (e.g., before, during, after). Such work has revealed that interactions among drivers are important, but existing case studies are ill suited to guiding development of new indicators [<a href="https://doi.org/10.1016/j.ijdrr.2015.09.013" target="_blank" rel="noopener noreferrer"><em>Rufat et al.</em></a>, 2015].</p><p>Advances in geostatistical analyses have enabled researchers to characterize interactions more accurately among social vulnerability and hazard outcomes. Figure 1b depicts social vulnerability and annualized per capita hazard losses for U.S. counties from 2010 to 2019, facilitating visualization of the spatial coincidence of pre‑event susceptibilities and hazard impacts. Places ranked high in both dimensions may be priority locations for management interventions. Further, such analysis provides invaluable comparisons between places as well as information summarizing state and regional conditions.</p><p>In Figure 2, we take the analysis of interactions a step further, dividing counties into two categories: those experiencing annual per capita losses above or below the national average from 2010 to 2019. The differences among individual race, ethnicity, and poverty variables between the two county groups are small. But expressing race together with poverty (poverty attenuated by race) produces quite different results: Counties with high hazard losses have higher percentages of both impoverished Black populations and impoverished white populations than counties with low hazard losses. These county differences are most pronounced for impoverished Black populations.</p>Fig. 2. Differences in population percentages between counties experiencing annual per capita losses above or below the national average from 2010 to 2019 for individual and compound social vulnerability indicators (race and poverty).
<p>Our current work focuses on social vulnerability to floods using geostatistical modeling and mapping. The research directions are twofold. The first is to develop hazard-specific indicators of social vulnerability to aid in mitigation planning [<a href="https://doi.org/10.1007/s11069-020-04470-2" target="_blank" rel="noopener noreferrer"><em>Tate et al.</em></a>, 2021]. Because natural hazards differ in their innate characteristics (e.g., rate of onset, spatial extent), causal processes (e.g., urbanization, meteorology), and programmatic responses by government, manifestations of social vulnerability vary across hazards.</p><p>The second is to assess the degree to which socially vulnerable populations benefit from the leading disaster recovery programs [<a href="https://doi.org/10.1080/17477891.2019.1675578" target="_blank" rel="noopener noreferrer"><em>Emrich et al.</em></a>, 2020], such as the Federal Emergency Management Agency's (FEMA) <a href="https://www.fema.gov/individual-disaster-assistance" target="_blank" rel="noopener noreferrer">Individual Assistance</a> program and the U.S. Department of Housing and Urban Development's Community Development Block Grant (CDBG) <a href="https://www.hudexchange.info/programs/cdbg-dr/" target="_blank" rel="noopener noreferrer">Disaster Recovery</a> program. Both research directions posit social vulnerability indicators as potential measures of social equity.</p>Social Vulnerability as a Measure of Equity
<p>Given their focus on social marginalization and economic barriers, social vulnerability indicators are attracting growing scientific interest as measures of inequity resulting from disasters. Indeed, social vulnerability and inequity are related concepts. Social vulnerability research explores the differential susceptibilities and capacities of disaster-affected populations, whereas social equity analyses tend to focus on population disparities in the allocation of resources for hazard mitigation and disaster recovery. Interventions with an equity focus emphasize full and equal resource access for all people with unmet disaster needs.</p><p>Yet newer studies of inequity in disaster programs have documented troubling disparities in income, race, and home ownership among those who <a href="https://eos.org/articles/equity-concerns-raised-in-federal-flood-property-buyouts" target="_blank">participate in flood buyout programs</a>, are <a href="https://www.eenews.net/stories/1063477407" target="_blank" rel="noopener noreferrer">eligible for postdisaster loans</a>, receive short-term recovery assistance [<a href="https://doi.org/10.1016/j.ijdrr.2020.102010" target="_blank" rel="noopener noreferrer"><em>Drakes et al.</em></a>, 2021], and have <a href="https://www.texastribune.org/2020/08/25/texas-natural-disasters--mental-health/" target="_blank" rel="noopener noreferrer">access to mental health services</a>. For example, a recent analysis of federal flood buyouts found racial privilege to be infused at multiple program stages and geographic scales, resulting in resources that disproportionately benefit whiter and more urban counties and neighborhoods [<a href="https://doi.org/10.1177/2378023120905439" target="_blank" rel="noopener noreferrer"><em>Elliott et al.</em></a>, 2020].</p><p>Investments in disaster risk reduction are largely prioritized on the basis of hazard modeling, historical impacts, and economic risk. Social equity, meanwhile, has been far less integrated into the considerations of public agencies for hazard and disaster management. But this situation may be beginning to shift. Following the adage of "what gets measured gets managed," social equity metrics are increasingly being inserted into disaster management.</p><p>At the national level, FEMA has <a href="https://www.fema.gov/news-release/20200220/fema-releases-affordability-framework-national-flood-insurance-program" target="_blank">developed options</a> to increase the affordability of flood insurance [Federal Emergency Management Agency, 2018]. At the subnational scale, Puerto Rico has integrated social vulnerability into its CDBG Mitigation Action Plan, expanding its considerations of risk beyond only economic factors. At the local level, Harris County, Texas, has begun using social vulnerability indicators alongside traditional measures of flood risk to introduce equity into the prioritization of flood mitigation projects [<a href="https://www.hcfcd.org/Portals/62/Resilience/Bond-Program/Prioritization-Framework/final_prioritization-framework-report_20190827.pdf?ver=2019-09-19-092535-743" target="_blank" rel="noopener noreferrer"><em>Harris County Flood Control District</em></a>, 2019].</p><p>Unfortunately, many existing measures of disaster equity fall short. They may be unidimensional, using single indicators such as income in places where underlying vulnerability processes suggest that a multidimensional measure like racialized poverty (Figure 2) would be more valid. And criteria presumed to be objective and neutral for determining resource allocation, such as economic loss and cost-benefit ratios, prioritize asset value over social equity. For example, following the <a href="http://www.cedar-rapids.org/discover_cedar_rapids/flood_of_2008/2008_flood_facts.php" target="_blank" rel="noopener noreferrer">2008 flooding</a> in Cedar Rapids, Iowa, cost-benefit criteria supported new flood protections for the city's central business district on the east side of the Cedar River but not for vulnerable populations and workforce housing on the west side.</p><p>Furthermore, many equity measures are aspatial or ahistorical, even though the roots of marginalization may lie in systemic and spatially explicit processes that originated long ago like redlining and urban renewal. More research is thus needed to understand which measures are most suitable for which social equity analyses.</p>Challenges for Disaster Equity Analysis
<p>Across studies that quantify, map, and analyze social vulnerability to natural hazards, modelers have faced recurrent measurement challenges, many of which also apply in measuring disaster equity (Table 1). The first is clearly establishing the purpose of an equity analysis by defining characteristics such as the end user and intended use, the type of hazard, and the disaster stage (i.e., mitigation, response, or recovery). Analyses using generalized indicators like the CDC Social Vulnerability Index may be appropriate for identifying broad areas of concern, whereas more detailed analyses are ideal for high-stakes decisions about budget allocations and project prioritization.</p>Wisconsin will end its controversial wolf hunt early after hunters and trappers killed almost 70 percent of the state's quota in the hunt's first 48 hours.
By Jessica Corbett
Sen. Bernie Sanders on Tuesday was the lone progressive to vote against Tom Vilsack reprising his role as secretary of agriculture, citing concerns that progressive advocacy groups have been raising since even before President Joe Biden officially nominated the former Obama administration appointee.