
Pew Charitable Trusts
As energy is expected to play prominently in the State of the Union address, the Pew Clean Energy Program and more than 200 businesses and trade groups are touting the economic benefits of increasing industrial efficiency in a full-page advertisement Tuesday, Jan. 24, in the Hill, Politico, and Roll Call. Signers include Caterpillar, DuPont, Dow Chemical Co., Siemens Corp., American Biomass Corp., American Council for an Energy-Efficient Economy, Master Stainless Steel, Los Angeles Business Council, Texas Combined Heat and Power Initiative, and the U.S. Clean Heat and Power Association. The ad reads:
“Each year, America’s utilities and factories send enough heat up their chimneys to power all of Japan. But with existing, proven technologies, we can harness that wasted energy, dramatically cut electricity costs, and make our manufacturers more competitive.
“According to Oak Ridge National Laboratory, significantly increasing our industrial energy efficiency would spur more than $200 billion in new private investment in the U.S. and create up to 1,000,000 jobs. Harness the heat to create new jobs and make our country more competitive.”
To see the full size ad, click here.
Many manufacturers, hotels, campuses, and utilities across the country already recycle their waste heat—a process known as cogeneration, or combined heat and power (CHP). But much more can be done. The Oak Ridge lab estimates that the U.S. has the potential to double industrial energy efficiency, providing impressive economic benefits. Rising energy prices affect companies large and small. Using wasted heat and recycling energy can dramatically reduce costs and give businesses the flexibility to invest those savings elsewhere. Click here for more information.
Three bipartisan bills in the U.S. House deal with industrial energy efficiency, and a bill authored by Rep. Charles F. Bass (R-NH), which seeks to double CHP, has been drafted. A Senate bill authored by Jeanne Shaheen (D-NH) and Rob Portman (R-OH) on efficiency includes a CHP provision. Sens. Jeff Bingaman (D-NM) and Olympia Snowe (R-ME) are expected to submit a bill soon that also will address industrial efficiency.
And Capitol Hill will soon have its own CHP project. The Capitol Power Plant is developing a design for producing 18 MW of electricity through improved energy-efficiency processes to heat congressional buildings. The improvements will help Congress reduce energy use by up to 30 percent.
Although installation requires an initial investment, companies recoup their costs and start to see savings within a few years. For example:
- The Penn England Farm employs CHP to produce electricity for its dairy operations.
- The Cox Interior Inc. manufacturing plant in Campbellsville, Ky., operates a 5-MW system that saves the company $4.5 million a year. It also produces more electricity than the company needs, so Cox Interior sells about $50,000 worth of power back to the local utility.
- The Sierra Nevada Brewing Co. in Chico, Nevada, installed a 1-MW system that will save the company $400,000 a year and pay for itself within five years of operation.
- Lorin Industries in Michigan has recycled its wasted heat since 1943 and expanded capacity in 1990. The system saves the company $540,000 a year, and the newest addition paid for itself in just four years—largely due to the significant decrease in the company’s need to purchase more costly peak electricity.
For more information, click here.
A tornado tore through a city north of Birmingham, Alabama, Monday night, killing one person and injuring at least 30.
- Tornadoes and Climate Change: What Does the Science Say ... ›
- Tornadoes Hit Unusually Wide Swaths of U.S., Alarming Climate ... ›
- 23 Dead as Tornado Pummels Lee County, AL in Further Sign ... ›
EcoWatch Daily Newsletter
By David Konisky
On his first day in office President Joe Biden started signing executive orders to reverse Trump administration policies. One sweeping directive calls for stronger action to protect public health and the environment and hold polluters accountable, including those who "disproportionately harm communities of color and low-income communities."
Michael S. Regan, President Biden's nominee to lead the U.S. Environmental Protection Agency, grew up near a coal-burning power plant in North Carolina and has pledged to "enact an environmental justice framework that empowers people in all communities." NCDEQ
Trending
By Katherine Kornei
Clear-cutting a forest is relatively easy—just pick a tree and start chopping. But there are benefits to more sophisticated forest management. One technique—which involves repeatedly harvesting smaller trees every 30 or so years but leaving an upper story of larger trees for longer periods (60, 90, or 120 years)—ensures a steady supply of both firewood and construction timber.
A Pattern in the Rings
<p>The <a href="https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/coppice-standards-0" target="_blank">coppice-with-standards</a> management practice produces a two-story forest, said <a href="https://www.researchgate.net/profile/Bernhard_Muigg" target="_blank">Bernhard Muigg</a>, a dendrochronologist at the University of Freiburg in Germany. "You have an upper story of single trees that are allowed to grow for several understory generations."</p><p>That arrangement imprints a characteristic tree ring pattern in a forest's upper story trees (the "standards"): thick rings indicative of heavy growth, which show up at regular intervals as the surrounding smaller trees are cut down. "The trees are growing faster," said Muigg. "You can really see it with your naked eye."</p><p>Muigg and his collaborators characterized that <a href="https://ltrr.arizona.edu/about/treerings" target="_blank">dendrochronological pattern</a> in 161 oak trees growing in central Germany, one of the few remaining sites in Europe with actively managed coppice-with-standards forests. They found up to nine cycles of heavy growth in the trees, the oldest of which was planted in 1761. The researchers then turned to a historical data set — more than 2,000 oak <a href="https://eos.org/articles/podcast-discovering-europes-history-through-its-timbers" target="_blank" rel="noopener noreferrer">timbers from buildings and archaeological sites</a> in Germany and France dating from between 300 and 2015 — to look for a similar pattern.</p>A Gap of 500 Years
<p>The team found wood with the characteristic coppice-with-standards tree ring pattern dating to as early as the 6th century. That was a surprise, Muigg and his colleagues concluded, because the first mention of this forest management practice in historical documents occurred only roughly 500 years later, in the 13th century.</p><p>It's probable that forest management practices were not well documented prior to the High Middle Ages (1000–1250), the researchers suggested. "Forests are mainly mentioned in the context of royal hunting interests or donations," said Muigg. Dendrochronological studies are particularly important because they can reveal information not captured by a sparse historical record, he added.</p><p>These results were <a href="https://www.nature.com/articles/s41598-020-78933-8" target="_blank">published in December in <em>Scientific Reports</em></a>.</p><p>"It's nice to see the longevity and the history of coppice-with-standards," said <a href="https://www.teagasc.ie/contact/staff-directory/s/ian-short/" target="_blank">Ian Short</a>, a forestry researcher at Teagasc, the Agriculture and Food Development Authority in Ireland, not involved in the research. This technique is valuable because it promotes conservation and habitat biodiversity, Short said. "In the next 10 or 20 years, I think we'll see more coppice-with-standards coming back into production."</p><p>In the future, Muigg and his collaborators hope to analyze a larger sample of historic timbers to trace how the coppice-with-standards practice spread throughout Europe. It will be interesting to understand where this technique originated and how it propagated, said Muigg, and there are plenty of old pieces of wood waiting to be analyzed. "There [are] tons of dendrochronological data."</p><p><em><a href="mailto:katherine.kornei@gmail.com" target="_blank" rel="noopener noreferrer">Katherine Kornei</a> is a freelance science journalist covering Earth and space science. Her bylines frequently appear in Eos, Science, and The New York Times. Katherine holds a Ph.D. in astronomy from the University of California, Los Angeles.</em></p><p><em>This story originally appeared in <a href="https://eos.org/articles/tree-rings-reveal-how-ancient-forests-were-managed" target="_blank">Eos</a></em> <em>and is republished here as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.</em></p>Earth's ice is melting 57 percent faster than in the 1990s and the world has lost more than 28 trillion tons of ice since 1994, research published Monday in The Cryosphere shows.
By Jewel Fraser
Noreen Nunez lives in a middle-class neighborhood that rises up a hillside in Trinidad's Tunapuna-Piarco region.