Quantcast
Environmental News for a Healthier Planet and Life

This Fabric Can Power Your Phone

Energy
This Fabric Can Power Your Phone

Scientists in the U.S. and China have fashioned the ultimate in power dressing: a fabric that recovers energy from movement and at the same time turns sunlight into electricity.

A bracelet made from fabric woven with special energy-harvesting strands that collect electricity from the sun and motion.Georgia Institute of Technology

It may be a while before the new material reaches the high street stores and delivers significant energy savings, but it means that a smartphone in a pocket could charge itself from the fabric around it.

And it stands as yet another example of the burst of global ingenuity by materials scientists and engineers in response to the spectrum of climate change driven by rising greenhouse gas emissions.

Researchers have already tested a "bionic leaf" that can harvest sunlight energy 10 times more efficiently than chlorophyll-powered foliage.

Carbon Emissions

They have crafted windows and solar panels from wood, tested a "carbon negative" car battery that replaces its cathode material from carbon dioxide in the atmosphere and confected a brew of conifer essence and gut bacteria to make high-octane rocket fuel.

They have even devised an ultra-thin membrane that could capture nine-tenths of the carbon dioxide emissions from coal-burning power stations.

But the latest report from the laboratories—published in Nature Energy journal—could end up being tested in the field, as a tent fabric, or in the office, as curtains that could power a lighting system or as clothing that could exploit the wearer's activity and place in the sun.

The scientists used commercially-available machinery to weave together solar cells fashioned from lightweight polymer fibers with a second and very different thread of fibre-based nanogenerators that exploit the tribo-electric effect: that is, threads that could recover electrical power from any form of movement—rotation, sliding or vibration.

"This hybrid power textile device presents a novel solution to charging devices in the field, from something as simple as the wind blowing on a sunny day," professor Zhong Lin Wang, specialist in nanomaterials synthesis at Georgia Tech School of Materials Science and Engineering, said.

A piece of fabric woven with special strands of material that harvest electricity from the sun and motion.Georgia Institute of Technology

Highly Flexible

The new fabric is 320 millionths of a meter thick, woven together with strands of wool. It is, Professor Wang said, "highly flexible, breathable, lightweight and adaptable to a range of uses."

The energy-harvesting textile is based on common polymer materials that, he said, are not expensive to make and are environmentally friendly. The electrodes are also delivered by a low-cost process, so large-scale manufacture should be possible.

The scientists report that a 4 centimeter by 5 centimeter fragment of the hybrid power textile is capable of stably delivering output power of 0.5 milliwatts, and has been shown to charge a commercial capacitor up to two volts in one minute in ambient sunlight while being mechanically moved.

"The textile could continuously power an electronic watch, directly charge a cell phone, or drive water-splitting reactions," the authors, from Georgia Tech and from Chongqing University and Beijing Institute of Nanoenergy and Nanosystems in China, said.

With restaurants and supermarkets becoming less viable options during the pandemic, there has been a growth in demand and supply of local food. Baker County Tourism Travel Baker County / Flickr

By Robin Scher

Beyond the questions surrounding the availability, effectiveness and safety of a vaccine, the COVID-19 pandemic has led us to question where our food is coming from and whether we will have enough.

Read More Show Less

EcoWatch Daily Newsletter

Tearing through the crowded streets of Philadelphia, an electric car and a gas-powered car sought to win a heated race. One that mimicked how cars are actually used. The cars had to stop at stoplights, wait for pedestrians to cross the street, and swerve in and out of the hundreds of horse-drawn buggies. That's right, horse-drawn buggies. Because this race took place in 1908. It wanted to settle once and for all which car was the superior urban vehicle. Although the gas-powered car was more powerful, the electric car was more versatile. As the cars passed over the finish line, the defeat was stunning. The 1908 Studebaker electric car won by 10 minutes. If in 1908, the electric car was clearly the better form of transportation, why don't we drive them now? Today, I'm going to answer that question by diving into the history of electric cars and what I discovered may surprise you.

Read More Show Less

Trending

A technician inspects a bitcoin mining operation at Bitfarms in Saint Hyacinthe, Quebec on March 19, 2018. LARS HAGBERG / AFP via Getty Images

As bitcoin's fortunes and prominence rise, so do concerns about its environmental impact.

Read More Show Less
OR-93 traveled hundreds of miles from Oregon to California. Austin Smith Jr. / Confederated Tribes of Warm Springs / California Department of Fish and Wildlife

An Oregon-born wolf named OR-93 has sparked conservation hopes with a historic journey into California.

Read More Show Less
A plume of exhaust extends from the Mitchell Power Station, a coal-fired power plant built along the Monongahela River, 20 miles southwest of Pittsburgh, on Sept. 24, 2013 in New Eagle, Pennsylvania. The plant, owned by FirstEnergy, was retired the following month. Jeff Swensen / Getty Images

By David Drake and Jeffrey York

The Research Brief is a short take about interesting academic work.

The Big Idea

People often point to plunging natural gas prices as the reason U.S. coal-fired power plants have been shutting down at a faster pace in recent years. However, new research shows two other forces had a much larger effect: federal regulation and a well-funded activist campaign that launched in 2011 with the goal of ending coal power.

Read More Show Less