Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Offshore Wind Technology Is Advancing at a Rapid Pace

Business

The race is on to prove that offshore wind power on floating platforms can be a significant power source for coastal states, with more than a dozen designs in development.

Technology has advanced hugely since the first full-scale floating wind turbine was built near Stavanger, Norway, in 2009. Photo credit: Lars Christopher / Wikimedia Commons

All countries with deep seas off their coasts can exploit the technology by anchoring wind farms near their major cities. Countries supporting these floating power stations include Japan, the U.S. and European countries bordering the North Atlantic and Mediterranean. Island states with limited land space would also benefit.

There are already successful demonstration platforms in Norway and Portugal, proving that the technology works. The battle now is to get costs down so that offshore wind can compete with other renewables.

The latest group to claim a breakthrough is the Department of Civil and Environmental Engineering at the Universitat Politècnica de Catalunya, Spain. Its developers have designed and patented a floating platform for offshore wind turbines that they claim can reduce energy costs to €0.12 per kilowatt hour (kWh)—less than the cost of electricity from a new nuclear power station.

Efficient Design

They say the cost reduction is achieved through more efficient design and the use of concrete rather than steel, reducing costs by 60 percent.

Climent Molins and Alexis Campos, researchers at the Barcelona School of Civil Engineering, have developed another prototype called the WindCrete, a cylindrical structure with a large float and a ballast base that makes it self-stabilizing.

They say the main innovation of this model is its seamless, monolithic structure. It is also built of concrete, which is cheaper than steel, concrete is said to be more resistant in the marine environment, needing less maintenance and lasting for about 50 years.

The absence of joints in the platform is designed to increase its ability to withstand the effects of wind and seawater, avoiding the damage normally caused by wave action.

The WindCrete includes a 5-megawatt (MW) wind turbine that could be upgraded to carry rotors producing up to 15 MW with a relatively small increase in cost, making it far more economical.

Partially-submerged offshore platforms of this type require a minimum depth: 90 m in the case of the WindCrete. However, there is no technical maximum depth below which they cannot be installed. In the Gulf of Mexico, for example, there are floating oil platforms anchored at depths of up to 2,300 meters.

The WindCrete prototype, developed as part of a European project to promote innovation in this area, features in a report by the UK’s Carbon Trust on the current state of the floating wind technology market, written for the Scottish government.

Scotland has many deep sea locations close to its coasts and high wind speeds, so it is perfect for large-scale floating wind farms if they can be made competitive.

Examples of innovations in floating wind turbines. Photo credit: Carbon Trust

The report examines key trends, costs and barriers to commercial exploitation and includes an analysis of 18 models currently on the market.

Another area of development that offers promise for some coastal states is tidal power of various types.

It is not a new technology. The Rance Tidal Power Station in northwest France opened in 1966 and produces around 100 MW of electricity—enough to power 130,000 homes.

But new types of tidal power have been proved in the prototype stage and are expected to grow in importance.

Proving Successful

One of the most promising is undersea turbines, rather like wind turbines but smaller. They have been developed in Europe and are proving successful, particularly where the tide is strongest—such as at the entrance to sea inlets or between islands.

Another system under development—and already given the go-ahead by the British government—is a tidal lagoon in the Severn estuary between England and South Wales. A dam will be constructed an will fill as the tide comes in, driving turbines as it does so. It will then empty, again producing electricity as the tide flows out through the turbines.

Because the UK and Canada have the highest tides in the world, they are the two countries currently most interested in these technologies, although there are concerns in the UK that the Conservative government is currently lukewarm in its support for renewables because it has increased subsidies for nuclear and fossil fuels.

The improving prospects for the tidal power industry will be discussed at a conference, the International Tidal Energy Summit, to be held in London from Nov. 23-25.

Government ministers in the UK will face pressure there to support the industry, which insiders claim needs extra political help to maintain the UK’s technological lead in the area.

YOU MIGHT ALSO LIKE

Investing in Clean Energy Will Create Millions of Jobs, Increase GDP and Raise Household Incomes

Can Geoengineering Tame Devastating Hurricanes?

Solar-Powered Hearing Aids Are Music to the Ears of Kids Around the World

Can ‘Dragon Water’ Power the Planet With Renewable Energy?

EcoWatch Daily Newsletter

Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday. JustTulsa / CC BY 2.0

Much of Eastern Oklahoma, including most of Tulsa, remains an Indian reservation, the Supreme Court ruled on Thursday.

Read More Show Less
The Firefly Watch project is among the options for aspiring citizen scientists to join. Mike Lewinski / Wikimedia Commons / CC by 2.0

By Tiffany Means

Summer and fall are great seasons to enjoy the outdoors. But if you're already spending extra time outside because of the COVID-19 pandemic, you may be out of ideas on how to make fresh-air activities feel special. Here are a few suggestions to keep both adults and children entertained and educated in the months ahead, many of which can be done from the comfort of one's home or backyard.

Read More Show Less
People sit at the bar of a restaurant in Austin, Texas, on June 26, 2020. Texas Governor Greg Abbott ordered bars to be closed by noon on June 26 and for restaurants to be reduced to 50% occupancy. Coronavirus cases in Texas spiked after being one of the first states to begin reopening. SERGIO FLORES / AFP via Getty Images

The coronavirus may linger in the air in crowded indoor spaces, spreading from one person to the next, the World Health Organization acknowledged on Thursday, as The New York Times reported. The announcement came just days after 239 scientists wrote a letter urging the WHO to consider that the novel coronavirus is lingering in indoor spaces and infecting people, as EcoWatch reported.

Read More Show Less
A never-before-documented frog species has been discovered in the Peruvian highlands and named Phrynopus remotum. Germán Chávez

By Angela Nicoletti

The eastern slopes of the Andes Mountains in central Perú are among the most remote places in the world.

Read More Show Less
Left: Lemurs in Madagascar on March 30, 2017. Mathias Appel / Flickr. Right: A North Atlantic right whale mother and calf. National Marine Fisheries Service

A new analysis by scientists at the Swiss-based International Union for Conservation of Nature (IUCN) found that lemurs and the North Atlantic right whale are on the brink of extinction.

Read More Show Less
Nobody knows exactly how much vitamin D a person actually needs. However, vitamin D is becoming increasingly popular. Colin Dunn / Flickr / CC by 2.0

By Julia Vergin

It is undisputed that vitamin D plays a role everywhere in the body and performs important functions. A severe vitamin D deficiency, which can occur at a level of 12 nanograms per milliliter of blood or less, leads to severe and painful bone deformations known as rickets in infants and young children and osteomalacia in adults. Unfortunately, this is where the scientific consensus ends.

Read More Show Less

Trending

Data from a scientist measuring macroalgal communities in rocky shores in the Argentinean Patagonia would be added to the new system. Patricia Miloslavich / University of Delaware

Ocean scientists have been busy creating a global network to understand and measure changes in ocean life. The system will aggregate data from the oceans, climate and human activity to better inform sustainable marine management practices.

EcoWatch sat down with some of the scientists spearheading the collaboration to learn more.

Read More Show Less