MIT Races to Put Nuclear Fusion on the Grid to Fight Climate Change

Fusion energy—a long-held dream of clean and unlimited power—could be inching closer to reality following a collaboration from the Massachusetts Institute of Technology (MIT) and a startup company.
MIT and Cambridge-based Commonwealth Fusion Systems will spearhead the multimillion-dollar effort, which aims to put fusion power " on the grid in 15 years," with an ultimate goal of rapidly commercializing fusion energy and establishing a new industry, the university announced.
"This is an important historical moment: Advances in superconducting magnets have put fusion energy potentially within reach, offering the prospect of a safe, carbon-free energy future," said MIT president L. Rafael Reif in the announcement.
"As humanity confronts the rising risks of climate disruption, I am thrilled that MIT is joining with industrial allies, both longstanding and new, to run full-speed toward this transformative vision for our shared future on Earth."
Nuclear fusion, in very simple terms, is a process where energy is created by smashing together two hydrogen atoms. This process is different from what's going on in today's nuclear power plants, where fission is used to split atoms to create energy—along with a side of radioactive waste.
Scientists have pursued nuclear fusion for decades but have been held back by funding cuts and technological roadblocks. One of the main difficulties is that net energy is only produced at extreme temperatures of hundreds of millions of degrees, which is too hot for any container to withstand. To get around that, fusion researchers use magnetic fields to hold the hot gases in place. However, that device uses up more energy than what gets churned out.
So how will this latest approach be different? According to Fast Company:
"The team at Commonwealth and MIT plans to spend the next three years using the new superconducting material, a steel tape coated with a compound called yttrium-barium-copper oxide, to make new magnets that could be used to make net power output possible and commercially viable. This should be feasible, they say, because magnets that are even stronger have been built using the same material for other purposes. Then the team plans to build a device that can use the magnets, with a design based on decades of research at MIT and elsewhere."
The ambitious venture has already attracted an investment of $50 million from the Italian energy company Eni.
"Everyone agrees on the eventual impact and the commercial potential of fusion power, but then the question is: How do you get there?" Commonwealth CEO and MIT grad Robert Mumgaard said. "We get there by leveraging the science that's already developed, collaborating with the right partners, and tackling the problems step by step."
Mumgaard also told the Guardian: "The aspiration is to have a working power plant in time to combat climate change. We think we have the science, speed and scale to put carbon-free fusion power on the grid in 15 years."
Sweden's reindeer have a problem. In winter, they feed on lichens buried beneath the snow. But the climate crisis is making this difficult. Warmer temperatures mean moisture sometimes falls as rain instead of snow. When the air refreezes, a layer of ice forms between the reindeer and their meal, forcing them to wander further in search of ideal conditions. And sometimes, this means crossing busy roads.
- San Antonio, Texas Unveils Largest Highway Crossing for Wildlife in ... ›
- Wildlife Crossings a Huge Success - EcoWatch ›
EcoWatch Daily Newsletter
Heatwaves are not just distinct to the land. A recent study found lakes are susceptible to temperature rise too, causing "lake heatwaves," The Independent reported.
- Climate Change Will Be Sudden and Cataclysmic Unless We Act Now ›
- There's a Heatwave at the Arctic 'Doomsday Vault' - EcoWatch ›
- Marine Heatwaves Destroy Ocean Ecosystems Like Wildfires ... ›
Trending
By Aaron W Hunter
A chance discovery of a beautifully preserved fossil in the desert landscape of Morocco has solved one of the great mysteries of biology and paleontology: how starfish evolved their arms.
The Pompeii of palaeontology. Aaron Hunter, Author provided
<h2></h2><p>Although starfish might appear very robust animals, they are typically made up of lots of hard parts attached by ligaments and soft tissue which, upon death, quickly degrade. This means we rely on places like the Fezouata formations to provide snapshots of their evolution.</p><p>The starfish fossil record is patchy, especially at the critical time when many of these animal groups first appeared. Sorting out how each of the various types of ancient starfish relate to each other is like putting a puzzle together when many of the parts are missing.</p><h2>The Oldest Starfish</h2><p><em><a href="https://www.biorxiv.org/content/10.1101/216101v1.full.pdf" target="_blank" rel="noopener noreferrer">Cantabrigiaster</a></em> is the most primitive starfish-like animal to be discovered in the fossil record. It was discovered in 2003, but it has taken over 17 years to work out its true significance.</p><p>What makes <em>Cantabrigiaster</em> unique is that it lacks almost all the characteristics we find in brittle stars and starfish.</p><p>Starfish and brittle stars belong to the family Asterozoa. Their ancestors, the Somasteroids were especially fragile - before <em>Cantabrigiaster</em> we only had a handful of specimens. The celebrated Moroccan paleontologist Mohamed <a href="https://doi.org/10.1016/j.palaeo.2016.06.041" target="_blank" rel="noopener noreferrer">Ben Moula</a> and his local team was instrumental in discovering <a href="https://www.sciencedirect.com/science/article/abs/pii/S0031018216302334?via%3Dihub" target="_blank" rel="noopener noreferrer">these amazing fossils</a> near the town of Zagora, in Morocco.</p><h2>The Breakthrough</h2><p>Our breakthrough moment came when I compared the arms of <em>Cantabrigiaster</em> with those of modern sea lilles, filter feeders with long feathery arms that tend to be attached to the sea floor by a stem or stalk.</p><p>The striking similarity between these modern filter feeders and the ancient starfish led our team from the University of Cambridge and Harvard University to create a new analysis. We applied a biological model to the features of all the current early Asterozoa fossils in existence, along with a sample of their closest relatives.</p>Cantabrigiaster is the most primitive starfish-like animal to be discovered in the fossil record. Aaron Hunter, Author provided
<p>Our results demonstrate <em>Cantabrigiaster</em> is the most primitive of all the Asterozoa, and most likely evolved from ancient animals called crinoids that lived 250 million years before dinosaurs. The five arms of starfish are a relic left over from these ancestors. In the case of <em>Cantabrigiaster</em>, and its starfish descendants, it evolved by flipping upside-down so its arms are face down on the sediment to feed.</p><p>Although we sampled a relatively small numbers of those ancestors, one of the unexpected outcomes was it provided an idea of how they could be related to each other. Paleontologists studying echinoderms are often lost in detail as all the different groups are so radically different from each other, so it is hard to tell which evolved first.</p>President Joe Biden officially took office Wednesday, and immediately set to work reversing some of former President Donald Trump's environmental policies.
- Biden Reaffirms Commitment to Rejoining Paris Agreement ... ›
- Biden Likely Plans to Cancel Keystone XL Pipeline on Day One ... ›
- Joe Biden Appoints Climate Crisis Team - EcoWatch ›
In many schools, the study of climate change is limited to the science. But at the University of Minnesota, Twin Cities, students in one class also learn how to take climate action.