Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

MIT Races to Put Nuclear Fusion on the Grid to Fight Climate Change

Renewable Energy
MIT Races to Put Nuclear Fusion on the Grid to Fight Climate Change
MIT and Commonwealth Fusion Systems launch novel approach to fusion power. Twitter

Fusion energy—a long-held dream of clean and unlimited power—could be inching closer to reality following a collaboration from the Massachusetts Institute of Technology (MIT) and a startup company.

MIT and Cambridge-based Commonwealth Fusion Systems will spearhead the multimillion-dollar effort, which aims to put fusion power " on the grid in 15 years," with an ultimate goal of rapidly commercializing fusion energy and establishing a new industry, the university announced.


"This is an important historical moment: Advances in superconducting magnets have put fusion energy potentially within reach, offering the prospect of a safe, carbon-free energy future," said MIT president L. Rafael Reif in the announcement.

"As humanity confronts the rising risks of climate disruption, I am thrilled that MIT is joining with industrial allies, both longstanding and new, to run full-speed toward this transformative vision for our shared future on Earth."

Nuclear fusion, in very simple terms, is a process where energy is created by smashing together two hydrogen atoms. This process is different from what's going on in today's nuclear power plants, where fission is used to split atoms to create energy—along with a side of radioactive waste.

Scientists have pursued nuclear fusion for decades but have been held back by funding cuts and technological roadblocks. One of the main difficulties is that net energy is only produced at extreme temperatures of hundreds of millions of degrees, which is too hot for any container to withstand. To get around that, fusion researchers use magnetic fields to hold the hot gases in place. However, that device uses up more energy than what gets churned out.

So how will this latest approach be different? According to Fast Company:

"The team at Commonwealth and MIT plans to spend the next three years using the new superconducting material, a steel tape coated with a compound called yttrium-barium-copper oxide, to make new magnets that could be used to make net power output possible and commercially viable. This should be feasible, they say, because magnets that are even stronger have been built using the same material for other purposes. Then the team plans to build a device that can use the magnets, with a design based on decades of research at MIT and elsewhere."

The ambitious venture has already attracted an investment of $50 million from the Italian energy company Eni.

"Everyone agrees on the eventual impact and the commercial potential of fusion power, but then the question is: How do you get there?" Commonwealth CEO and MIT grad Robert Mumgaard said. "We get there by leveraging the science that's already developed, collaborating with the right partners, and tackling the problems step by step."

Mumgaard also told the Guardian: "The aspiration is to have a working power plant in time to combat climate change. We think we have the science, speed and scale to put carbon-free fusion power on the grid in 15 years."

The wildfires that roared through Eastern Washington in September had a devastating impact on an extremely endangered species of rabbit.

Read More Show Less

EcoWatch Daily Newsletter

A protestor in NYC holds up a sign that reads, "November Is Coming" on June 14, 2020 in reference to voting in the 2020 presidential election. Ira L. Black / Corbis / Getty Images

By Mark Hertsgaard

What follows are not candidate endorsements. Rather, this nonpartisan guide aims to inform voters' choices, help journalists decide what races to follow, and explore what the 2020 elections could portend for climate action in the United States in 2021 and beyond.

Read More Show Less

Trending

Activists fight a peat fire in Siberia in September. ALEXANDER NEMENOV / AFP via Getty Images

The wildfires that ignited in the Arctic this year started earlier and emitted more carbon dioxide than ever before.

Read More Show Less
A metapopulation project in South Africa has almost doubled the population of cheetahs in less than nine years. Ken Blum / Wikimedia Commons / CC by 3.0

By Tony Carnie

South Africa is home to around 1,300 of the world's roughly 7,100 remaining cheetahs. It's also the only country in the world with significant cheetah population growth, thanks largely to a nongovernmental conservation project that depends on careful and intensive human management of small, fenced-in cheetah populations. Because most of the reserves are privately funded and properly fenced, the animals benefit from higher levels of security than in the increasingly thinly funded state reserves.

Read More Show Less
A new super enzyme feeds on the type of plastic that water and soda bottles are made of, polyethylene terephthalate (PET). zoff-photo / iStock / Getty Images Plus

Scientists are on the brink of scaling up an enzyme that devours plastic. In the latest breakthrough, the enzyme degraded plastic bottles six times faster than previous research achieved, as The Guardian reported.

Read More Show Less

Support Ecowatch