Quantcast
Climate
View from the Empire State Building as rain clouds form over New York City. Wordpress / tevypilc

New York City Could Face Damaging Floods ‘Every Five Years’ in a Warmer Climate

By Daisy Dunne

New York City could be struck by severe flooding up to every five years by 2030 to 2045 if no efforts are made to curb human-driven climate change, new research finds.

Floods that reach more than 2.25 meters (approximately 7.4 feet) in height—enough to inundate the first story of a building—could dramatically increase in frequency as a result of future sea level rise and bigger storm surges, the study suggests. Such severe floods would be expected only around once in every 25 years from 1970 to 2005.


The findings make it clear that "[flood] adaptation measures are critical to protect lives and infrastructure in a changing climate," the lead author told Carbon Brief.

Flooding threat

Like many coastal cities in the U.S., New York is vulnerable to flooding driven by storm surges from tropical cyclones, as well as sea level rise. In 2012, Hurricane Sandy overwhelmed the city with floodwater, killing 43 people and causing close to $50 billion in damages.

Storm surges occur when a storm weather system moves from the sea to the land. As the weather system moves over the sea surface, its low pressure center pulls up the surface of the water. Then, as the storm blows towards land, wind pushes the sea towards the coast, hitting the shore with large waves.

The height of these waves is dependent on the underlying sea level, the tide, and the size of the tropical cyclone. As sea levels rise, a storm surge has more chance of breaching coastal flood defenses.

During Hurricane Sandy, the combined impact of the storm surge and a high tide saw sea levels reach a record height of 3.44 meters (approximately 11.3 feet).

Flooded Battery Park Tunnel after Hurricane SandyTimothy Krause / Flickr

Storm surges

To understand how climate change could affect the future risk of coastal flooding in New York, researchers used models to simulate the behavior of future tropical storms, as well as sea level rise in its surrounding waters.

Using a collection of global climate models,, the researchers gathered information about factors that impact the behavior of tropical storms. These factors include air temperature, humidity, sea surface temperature and wind speed.

The researchers used this information to create "synthetic storms," or the storms that are likely to exist in a warmer climate, explained Dr. Andra Garner, a scientist from Rutgers University in New Jersey and lead author of the new study published in the Proceedings of the National Academy of Sciences. She told Carbon Brief:

"Using this information, we can generate a set of storms whose behavior is consistent with a range of different climates. Each of these storms has their own unique set of characteristics, such as wind speed and pressure field."

The researchers then used a storm surge model (known as ADCIRC) to generate the expected surge that each synthetic storm could create at The Battery, a public park located at the southern tip of Manhattan Island.

The results suggest that storms are likely to become larger and more powerful in the coming decades. (Carbon Brief has previously explored the link between climate change and tropical storms.)

However, a rise in storm intensity may not necessarily affect the size of storm surges, said Garner. This is because changes in ocean conditions in a warmer climate could cause tropical storms to shift eastwards, away from New York City. She said:

"As we move from the modern time period into the future, we find that storms tend to become more intense, while simultaneously shifting somewhat eastward, away from New York City. The increase in storm intensity is compensated by the shift in storm tracks. That is, changing storm surge heights alone do not have a great impact on increasing the future flood risk for the city."

Sea level rise

However, sea level rise is likely to affect the size of future storm surges, the results suggest. Gardner said:

"The bad news is that when sea level rise is added into the picture, it becomes clear that overall flood heights will become drastically worse in New York City in coming years."

The chart below shows projected sea level rise in New York from 2010 to 2300. Yellow shows projected sea level rise under an intermediate emissions scenario (RCP4.5), while orange shows projected sea level rise under a high emissions scenario where global greenhouse gas emissions aren't curbed (RCP8.5).

In addition, the researchers used existing scenarios that considered the potential impact of changes to the Antarctic ice sheet (AIS) (red, maroon).

The latest assessment report from the Intergovernmental Panel on Climate Change (IPCC) estimated the contribution of the AIS to sea level rise could be -8 to 15cm under RCP8.5 by 2100 (pdf).

However, the authors of the new study noted that recent research using "a coupled ice sheet and climate dynamics model that includes marine ice sheet instability, ice shelf hydrofracturing, and marine ice-cliff collapse mechanisms suggests that the AIS could contribute more than 1m by 2100, and more than 10m by 2300, under RCP8.5."

Although there is "deep uncertainty" around the contributions of the Antarctic ice sheet to sea level rise, the authors wrote, "the potential for large contributions should not be neglected in risk assessments."

Projected sea level rise in New York City from 2010 to 2300. Yellow shows projected sea level rise under an intermediate emissions scenario (RCP4.5), while orange shows projected sea level rise under a high emissions scenario (RCP8.5).Garner et al. (2017)

The results suggest that, under the high emissions scenario, sea levels close to New York are likely to rise by 0.55 to 1.4 meters (approximately 1.8 to 4.6 feet) between 2010 and 2100. If the possible effects of Antarctic ice melt are considered, sea levels could rise by 0.88 to 2.5 meters (approximately 2.9 to 8.2 feet) by 2100.

The researchers combined their measurements of projected sea level rise and projected storm surge heights in order to estimate the total height of floods in New York in the coming decades.

The results showed that flood heights in New York from 2080 to 2100 could be 1.4 meters (approximately 4.6 feet) above the average flood heights witnessed from 1970 to 2005, when an average is taken from all the scenarios of future sea level rise.

And serious floods, which exceed more than 2.25 meters (approximately 7.4 feet) in height, could dramatically increase in frequency over the coming decades, Garner explained:

"When rising sea-levels combine with storm surge heights, flooding becomes much worse over time. For example, a 2.25 meter flood height, which occurred on average once every 500 years before 1800 in our work, and occurred once every 25 years on average from 1970 to 2005 in our study, could occur once every five years by 2030 to 2045 according to our results."

Such floods could pose a significant risk to human safety, she added.

"A flood height of 2.25 meters is a significant enough flood to potentially inundate the first story of many buildings. Post-Sandy, some infrastructure and planning is almost certainly trying to account for future flooding situations, but a flood of this magnitude in New York would certainly still have significant impacts for many aspects of the city."

Preparing the floodgates

The findings should prompt city planners to face up to the challenges posed by climate change, said Garner:

"Studies like this make it clear that adaptation measures are critical to protect lives and infrastructure in a changing climate. We can't pretend that these kinds of risks aren't growing in our changing climate, because studies such as this make it poignantly clear that they are."

The study is "very useful" said professor Kevin Trenberth, distinguished senior scientist at the National Center for Atmospheric Research, who was not involved in the study, but it doesn't include "some things of importance" such as the added impact of high tides and the risk of mid-latitude storms.

Also, looking as far out into the future as 2300 means the study relies on uncertain assumptions about factors such as future greenhouse gas emissions, he told Carbon Brief:

"The paper assesses coastal flood risk over the next three centuries, but these risks depend hugely on scenarios as to how factors such as emissions and population size change. This makes me quite uncomfortable: the assumptions are huge and understated."

It's also worth noting that other nearby cities, such as Hoboken in New Jersey, are "every bit or more vulnerable" than New York City, Trenberth added.

Reposted with permission from our media associate Carbon Brief.

Show Comments ()
Sponsored
TAFE SA TONSLEY / Flickr

Worldwide Clean Energy Investments Hit $333.5 Billion Last Year

Global investment in renewable energy hit $333.5 billion in 2018, the second-highest on record, according to a new analysis from Bloomberg New Energy Finance (BNEF).

That's a 3 percent jump from 2016 and 7 percent short of the $360 billion record set in 2015.

Keep reading... Show less
Renewable Energy

How Blockchain Could Boost Clean Energy

By Jeremy Deaton

Bitcoin, the much-hyped cryptocurrency, made headlines recently for driving a surge in power use. Around the globe, digital entrepreneurs are 'mining' bitcoins by solving complex math problems, using supercomputers to get the job done. Those supercomputers use a ton of power, which largely comes from coal- and gas-fired power plants spewing gobs of carbon pollution.

But while hackers wreak havoc on the climate, blockchain, the bleeding-edge technology behind bitcoin, could one day help clean up the mess. Climate wonks say blockchain has a role to play in the clean-energy economy, helping homeowners sell electricity, allowing businesses to trade carbon credits, and making it easier for governments to track greenhouse gas emissions.

Keep reading... Show less
Abdallah Issa / Flickr

Post-Fire Landslide Problems Likely to Worsen: What Can Be Done?

By Lee MacDonald

Several weeks after a series of wildfires blackened nearly 500 square miles in Southern California, a large winter storm rolled in from the Pacific. In most places the rainfall was welcomed and did not cause any major flooding from burned or unburned hillslopes.

But in the town of Montecito, a coastal community in Santa Barbara County that lies at the foot of the mountains blackened by the Thomas Fire, a devastating set of sediment-laden flows killed at least 20 people and damaged or destroyed more than 500 homes. In the popular press these flows were termed "mudslides," but with some rocks as large as cars these are more accurately described as hyperconcentrated flows or debris flows, depending on the amount of sediment mixed with the water.

Keep reading... Show less
The most notable observation from the count was DeMartino's sighting of the golden crowned kinglet, but in general volunteers found the same species they normally do. (Photo above is of a golden crowned kinglet, but not the one DeMartino spotted.) Melissa McMasters

Birders Get a First Look at How 2017 California Wildfires Affected Wildlife

By Matt Blois

A neighbor knocked on Rick Burgess's door at about 9:30 p.m. to tell him a fire was coming towards his home in Ventura, California. When he looked outside he saw a column of smoke, and the hills were already starting to turn orange. He loaded up his truck with a collection of native plants he was using to write a countywide plant guide, and barely had enough time to get out.

Keep reading... Show less
Sponsored
A learning garden from Kimbal Musk's nonprofit called Big Green. The Kitchen Community

Elon Musk's Brother Wants to Bring #RealFood to 100,000 Schools Across America

Kimbal Musk's nonprofit organization, The Kitchen Community, is expanding into a new, national nonprofit called Big Green, to build hundreds of outdoor Learning Garden classrooms across America.

Learning Gardens teach children an understanding of food, healthy eating and garden skills through experiential learning and garden-based education that tie into existing school curriculum, such as math, science and literacy.

Keep reading... Show less
Drilling fluids spilled into Ohio wetlands during construction of the Rover Pipeline in April. Sierra Club

Rover Pipeline Spills Another 150,000 Gallons of Drilling Fluid Into Ohio Wetlands

Energy Transfer Partners' troubled $4.2 billion Rover pipeline has spilled nearly 150,000 gallons of drilling fluid into wetlands near the Tuscarawas River in Stark County, Ohio—the same site where it released 2 million gallons in April.

The 713-mile pipeline, which will carry fracked gas across Pennsylvania, West Virginia, Ohio and Michigan and Canada, is currently under construction by the same Dallas-based company that built the controversial Dakota Access pipeline.

Keep reading... Show less
Sponsored

Large Dams Fail on Climate Change and Indigenous Rights

Brazil has flooded large swaths of the Amazon for hydro dams, despite opposition from Indigenous Peoples, environmentalists and others. The country gets 70 percent of its electricity from hydropower. Brazil's government had plans to expand development, opening half the Amazon basin to hydro. But a surprising announcement could halt that.

Keep reading... Show less
Jim Henderson / Wikimedia Commons

World's Largest Money Manager: Companies Must Respond to Social and Climate Challenges

The world's largest publicly traded companies must take a more active role in solving social issues or face blowback from investors, the CEO of BlackRock said Tuesday.

"To prosper over time, every company must not only deliver financial performance, but also show how it makes a positive contribution to society," Laurence Fink wrote in his annual letter to CEOs of companies in which BlackRock invests. BlackRock is the world's largest money manager, with more than $6 trillion in assets.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!