Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

New Fracking Rules Leave Drought-Ridden States High and Dry

Energy
New Fracking Rules Leave Drought-Ridden States High and Dry

Ceres

By Monika Freyman

Proposed standards that the U.S. Department of Interior (DOI) announced last week for hydraulic fracturing on federal and Indian lands are hugely important, especially in the arid West where water is gold. Unfortunately, water protection gets short shrift in the rules that, once finalized, will apply to 750 million acres of public lands.

To provide a bit of context, oil and gas wells on public lands account for about 13 percent of the nation’s natural gas production and five percent of its oil production. An estimated 3,100 wells are fracked on federal lands each year.

Disclosure of chemicals and enforcement are key issues in these rules, and I’m disappointed DOI’s Bureau of Land Management backed down from its initial push to require full disclosure of all chemicals used in fracking operations. The newer language requires companies only to disclose chemicals that won’t compromise their proprietary chemical blends.

Provisions for handling large volumes of contaminated wastewater are also overly lenient. It’s well documented that storage, treatment, transport and final disposal of the large volumes of contaminated wastewater is a significant water quality risk. Improper storage, on site leakage, volatile chemicals released from these waters and surface spills and transport accidents are all areas of concern that must be better addressed. The rules should mandate closed-loop systems, especially near populated areas.

They also fail to require baseline water testing, as states such as Colorado and Ohio do, before drilling can proceed. Nor do they include setback requirements for fracking operations.

Another worry is exemption loopholes that will prevent many aquifers from being protected. The new rules protect “usable waters” such as underground drinking water sources and water zones already being used for agricultural and industrial purposes. But they open the door for operators to seek “exemptions” when water supplies are not in active use. Under such exemptions an operator is not obliged to take measures to protect the aquifer.

This loophole is misguided because many of these “exempt” aquifers may indeed be needed in the future, especially as populations continue to grow in states like Texas and Colorado. Likewise, although some of these aquifers may be exempted due to high salt content, they may serve an important hydrological or ecological role and be interconnected with freshwater systems in groundwater or surface water systems.

Cumulative groundwater depletion from 1900-2008 across 40 aquifers.

The exemption issue is especially ironic given a new U.S. Geological Survey study released last week showing an alarming trend of aquifer depletion across much of the U.S., especially the Midwest and Southwest.

Many of these regions losing groundwater are in areas pursuing shale energy extraction, such as the Eagle Ford and Permian basins in Texas, and the Niobrara basin in Colorado, Wyoming and Nebraska.

From 1900–2008, natural stocks of water under the land decreased by more than twice the volume of water found in Lake Erie. Depletion rates have been especially pronounced since 1950, with the highest loss rates being from 2000 to 2008 (nearly 25 cubic kilometers on average per year).

Annual groundwater withdrawal estimates by water user. Source: Leonard Konikow, Groundwater depletion in the United States (1900-2008), Report 2013-5079.

I’ve often heard how damaging the 1950s and '60s were on groundwater depletion due to the advent of large-scale agriculture irrigation with many saying that this problem is now being properly managed and that we now "know better."

Unfortunately, we still have much to learn. Pumpage rates are still dominated by agriculture, but they also highlight a worrisome uptick of pumping by municipal and industrial users, especially over the last decade. This trend, coupled with escalating shale development in regions with high water stress, highlights the need to better manage groundwater resources.

Visit EcoWatch’s FRACKING and WATER pages for more related news on this topic.

——–

SIGN THIS PETITION TODAY:

Sustainable t-shirts by Allbirds are made from a new, low-carbon material that uses a mineral extract from discarded snow crab shells. Jerry Buttles / Allbirds

In the age of consumption, sustainability innovations can help shift cultural habits and protect dwindling natural resources. Improvements in source materials, product durability and end-of-life disposal procedures can create consumer products that are better for the Earth throughout their lifecycles. Three recent advancements hope to make a difference.

Read More Show Less

EcoWatch Daily Newsletter

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less

Support Ecowatch