Climate Explained: Methane Is Short-Lived in the Atmosphere but Leaves Long-Term Damage

Алексей Филатов / Getty Images
By Zebedee Nicholls and Tim Baxter
Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.
If you have a question you'd like an expert to answer, please send it to climate.change@stuff.co.nz
Methane is a shorter-lived greenhouse gas - why do we average it out over 100 years? By doing so, do we risk emitting so much in the upcoming decades that we reach climate tipping points?
The climate conversation is often dominated by talk of carbon dioxide, and rightly so. Carbon dioxide is the climate warming agent with the biggest overall impact on the heating of the planet.
But it is not the only greenhouse gas driving climate change.
Comparing Apples and Oranges
For the benefit of policy makers, the climate science community set up several ways to compare gases to aid with implementing, monitoring and verifying emissions reduction policies.
In almost all cases, these rely on a calculated common currency - a carbon dioxide-equivalent (CO₂-e). The most common way to determine this is by assessing the global warming potential (GWP) of the gas over time.
The simple intent of GWP calculations is to compare the climate heating effect of each greenhouse gas to that created by an equivalent amount (by mass) of carbon dioxide.
In this way, emissions of one gas - like methane - can be compared with emissions of any other - like carbon dioxide, nitrous dioxide or any of the myriad other greenhouse gases.
These comparisons are imperfect but the point of GWP is to provide a defensible way to compare apples and oranges.
Limits of Metrics
Unlike carbon dioxide, which is relatively stable and by definition has a GWP value of one, methane is a live-fast, die-young greenhouse gas.
Methane traps very large quantities of heat in the first decade after it is released in to the atmosphere, but quickly breaks down.
After a decade, most emitted methane has reacted with ozone to form carbon dioxide and water. This carbon dioxide continues to heat the climate for hundreds or even thousands of years.
Emitting methane will always be worse than emitting the same quantity of carbon dioxide, no matter the time scale.
How much worse depends on the time period used to average out its effects. The most commonly used averaging period is 100 years, but this is not the only choice, and it is not wrong to choose another.
As a starting point, the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report from 2013 says methane heats the climate by 28 times more than carbon dioxide when averaged over 100 years and 84 times more when averaged over 20 years.
Many Sources of Methane
On top of these base rates of warming, there are other important considerations.
Fully considered using the 100-year GWP and including natural feedbacks, the IPCC's report says fossil sources of methane - most of the gas burned for electricity or heat for industry and houses - can be up to 36 times worse than carbon dioxide. Methane from other sources - such as livestock and waste - can be up to 34 times worse.
While some uncertainty remains, a well-regarded recent assessment suggested an upwards revision of fossil and other methane sources, that would increase their GWP values to around 40 and 38 times worse than carbon dioxide respectively.
These works will be assessed in the IPCC's upcoming Sixth Assessment Report, with the physical science contribution due in 2021.
While we should prefer the most up to date science at any given time, the choice to consider - or not - the full impact of methane and the choice to consider its impact over 20, 100 or 500 years is ultimately political, not scientific.
Undervaluing or misrepresenting the impact of methane presents a clear risk for policy makers. It is vital they pay attention to the advice of scientists and bodies such as the IPCC.
Undervaluing methane's impact in this way is not a risk for climate modellers because they rely on more direct assessments of the impact of gases than GWP.
Tipping Points
The idea of climate tipping points is that, at some point, we may change the climate so much that it crosses an irreversible threshold.
At such a tipping point, the world would continue to heat well beyond our capability to limit the harm.
There are many tipping points we should be aware of. But exactly where these are - and precisely what the implications of crossing one would be - is uncertain.
Unfortunately, the only way we can be sure of where these tipping points are is to cross them. The only thing we know for sure about them is that the impact on lives, livelihoods and the places we love would be beyond catastrophic if we did.
But we cannot ignore disturbing impacts of climate change that are already here.
For example, damage to the landscape from the Black Summer bushfires may be irreversible and this represents its own form of climate tipping point.
The scientific understanding of climate change goes well beyond simple metrics like GWP. Shuffling between metrics - such as 20-year or 100-year GWP - cannot avoid the fact our very best chance of avoiding ever-worsening climate harm is to massively reduce our reliance on coal, oil and gas, along with reducing our emissions from all other sources of greenhouse gas.
If we do this, we offer ourselves the best chance of avoiding crossing thresholds we can never return from.
Zebedee Nicholls is a PhD Researcher at the Climate & Energy College, University of Melbourne.
Tim Baxter is a Fellow - Melbourne Law School; Senior Researcher - Climate Council; Associate - Australian-German Climate and Energy College, University of Melbourne.
Disclosure statement: Zebedee Nicholls is affiliated with The University of Melbourne's Climate & Energy College. He is funded by the Australian Government via the Australian Government Research Training Program (RTP). Tim Baxter is employed by the Climate Council, a non-profit organisation providing independent, authoritative information on climate change and its solutions to the Australian public and has previously been employed under various Australia Research Council grants.
Reposted with permission from The Conversation.
- Methane Emissions From Onshore Oil and Gas Equivalent to 14 ... ›
- EPA Expected to Allow More Methane Emissions From Oil and Gas ... ›
- Methane Levels Dramatically Increase in U.S. - EcoWatch ›
New fossils uncovered in Argentina may belong to one of the largest animals to have walked on Earth.
- Groundbreaking Fossil Shows Prehistoric 15-Foot Reptile Tried to ... ›
- Skull of Smallest Known Dinosaur Found in 99-Million-Year Old Amber ›
- Giant 'Toothed' Birds Flew Over Antarctica 40 Million Years Ago ... ›
- World's Second-Largest Egg Found in Antarctica Probably Hatched ... ›
EcoWatch Daily Newsletter
A federal court on Tuesday struck down the Trump administration's rollback of the Obama-era Clean Power Plan regulating greenhouse gas emissions from power plants.
- Pruitt Guts the Clean Power Plan: How Weak Will the New EPA ... ›
- It's Official: Trump Administration to Repeal Clean Power Plan ... ›
- 'Deadly' Clean Power Plan Replacement ›
Trending
By Jonathan Runstadler and Kaitlin Sawatzki
Over the course of the COVID-19 pandemic, researchers have found coronavirus infections in pet cats and dogs and in multiple zoo animals, including big cats and gorillas. These infections have even happened when staff were using personal protective equipment.
Gorillas have been affected by human viruses in the past and are susceptible to the coronavirus. Thomas Fuhrmann via Wikimedia Commons, CC BY-SA
- Gorillas in San Diego Test Positive for Coronavirus - EcoWatch ›
- Wildlife Rehabilitators Are Overwhelmed During the Pandemic. In ... ›
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Utah Mink Becomes First Wild Animal to Test Positive for Coronavirus ›
By Peter Giger
The speed and scale of the response to COVID-19 by governments, businesses and individuals seems to provide hope that we can react to the climate change crisis in a similarly decisive manner - but history tells us that humans do not react to slow-moving and distant threats.
A Game of Jenga
<p>Think of it as a game of Jenga and the planet's climate system as the tower. For generations, we have been slowly removing blocks. But at some point, we will remove a pivotal block, such as the collapse of one of the major global ocean circulation systems, for example the Atlantic Meridional Overturning Circulation (AMOC), that will cause all or part of the global climate system to fall into a planetary emergency.</p><p>But worse still, it could cause runaway damage: Where the tipping points form a domino-like cascade, where breaching one triggers breaches of others, creating an unstoppable shift to a radically and swiftly changing climate.</p><p>One of the most concerning tipping points is mass methane release. Methane can be found in deep freeze storage within permafrost and at the bottom of the deepest oceans in the form of methane hydrates. But rising sea and air temperatures are beginning to thaw these stores of methane.</p><p>This would release a powerful greenhouse gas into the atmosphere, 30-times more potent than carbon dioxide as a global warming agent. This would drastically increase temperatures and rush us towards the breach of other tipping points.</p><p>This could include the acceleration of ice thaw on all three of the globe's large, land-based ice sheets – Greenland, West Antarctica and the Wilkes Basin in East Antarctica. The potential collapse of the West Antarctic ice sheet is seen as a key tipping point, as its loss could eventually <a href="https://science.sciencemag.org/content/324/5929/901" target="_blank">raise global sea levels by 3.3 meters</a> with important regional variations.</p><p>More than that, we would be on the irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters, roughly at the rate of two meters per century, or maybe faster. Just look at the raised beaches around the world, at the last high stand of global sea level, at the end of the Pleistocene period around 120,0000 years ago, to see the evidence of such a warm world, which was just 2°C warmer than the present day.</p>Cutting Off Circulation
<p>As well as devastating low-lying and coastal areas around the world, melting polar ice could set off another tipping point: a disablement to the AMOC.</p><p>This circulation system drives a northward flow of warm, salty water on the upper layers of the ocean from the tropics to the northeast Atlantic region, and a southward flow of cold water deep in the ocean.</p><p>The ocean conveyor belt has a major effect on the climate, seasonal cycles and temperature in western and northern Europe. It means the region is warmer than other areas of similar latitude.</p><p>But melting ice from the Greenland ice sheet could threaten the AMOC system. It would dilute the salty sea water in the north Atlantic, making the water lighter and less able or unable to sink. This would slow the engine that drives this ocean circulation.</p><p><a href="https://www.carbonbrief.org/atlantic-conveyor-belt-has-slowed-15-per-cent-since-mid-twentieth-century" target="_blank">Recent research</a> suggests the AMOC has already weakened by around 15% since the middle of the 20th century. If this continues, it could have a major impact on the climate of the northern hemisphere, but particularly Europe. It may even lead to the <a href="https://ore.exeter.ac.uk/repository/handle/10871/39731?show=full" target="_blank" rel="noopener noreferrer">cessation of arable farming</a> in the UK, for instance.</p><p>It may also reduce rainfall over the Amazon basin, impact the monsoon systems in Asia and, by bringing warm waters into the Southern Ocean, further destabilize ice in Antarctica and accelerate global sea level rise.</p>The Atlantic Meridional Overturning Circulation has a major effect on the climate. Praetorius (2018)
Is it Time to Declare a Climate Emergency?
<p>At what stage, and at what rise in global temperatures, will these tipping points be reached? No one is entirely sure. It may take centuries, millennia or it could be imminent.</p><p>But as COVID-19 taught us, we need to prepare for the expected. We were aware of the risk of a pandemic. We also knew that we were not sufficiently prepared. But we didn't act in a meaningful manner. Thankfully, we have been able to fast-track the production of vaccines to combat COVID-19. But there is no vaccine for climate change once we have passed these tipping points.</p><p><a href="https://www.weforum.org/reports/the-global-risks-report-2021" target="_blank">We need to act now on our climate</a>. Act like these tipping points are imminent. And stop thinking of climate change as a slow-moving, long-term threat that enables us to kick the problem down the road and let future generations deal with it. We must take immediate action to reduce global warming and fulfill our commitments to the <a href="https://www.ipcc.ch/sr15/" target="_blank" rel="noopener noreferrer">Paris Agreement</a>, and build resilience with these tipping points in mind.</p><p>We need to plan now to mitigate greenhouse gas emissions, but we also need to plan for the impacts, such as the ability to feed everyone on the planet, develop plans to manage flood risk, as well as manage the social and geopolitical impacts of human migrations that will be a consequence of fight or flight decisions.</p><p>Breaching these tipping points would be cataclysmic and potentially far more devastating than COVID-19. Some may not enjoy hearing these messages, or consider them to be in the realm of science fiction. But if it injects a sense of urgency to make us respond to climate change like we have done to the pandemic, then we must talk more about what has happened before and will happen again.</p><p>Otherwise we will continue playing Jenga with our planet. And ultimately, there will only be one loser – us.</p>By John R. Platt
The period of the 45th presidency will go down as dark days for the United States — not just for the violent insurgency and impeachment that capped off Donald Trump's four years in office, but for every regressive action that came before.
- Biden Announces $2 Trillion Climate and Green Recovery Plan ... ›
- How Biden and Kerry Can Rebuild America's Climate Leadership ... ›
- Biden's EPA Pick Michael Regan Urged to Address Environmental ... ›
- How Joe Biden's Climate Plan Compares to the Green New Deal ... ›