Climate Explained: Methane Is Short-Lived in the Atmosphere but Leaves Long-Term Damage

Алексей Филатов / Getty Images
By Zebedee Nicholls and Tim Baxter
Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.
If you have a question you'd like an expert to answer, please send it to climate.change@stuff.co.nz
Methane is a shorter-lived greenhouse gas - why do we average it out over 100 years? By doing so, do we risk emitting so much in the upcoming decades that we reach climate tipping points?
The climate conversation is often dominated by talk of carbon dioxide, and rightly so. Carbon dioxide is the climate warming agent with the biggest overall impact on the heating of the planet.
But it is not the only greenhouse gas driving climate change.
Comparing Apples and Oranges
For the benefit of policy makers, the climate science community set up several ways to compare gases to aid with implementing, monitoring and verifying emissions reduction policies.
In almost all cases, these rely on a calculated common currency - a carbon dioxide-equivalent (CO₂-e). The most common way to determine this is by assessing the global warming potential (GWP) of the gas over time.
The simple intent of GWP calculations is to compare the climate heating effect of each greenhouse gas to that created by an equivalent amount (by mass) of carbon dioxide.
In this way, emissions of one gas - like methane - can be compared with emissions of any other - like carbon dioxide, nitrous dioxide or any of the myriad other greenhouse gases.
These comparisons are imperfect but the point of GWP is to provide a defensible way to compare apples and oranges.
Limits of Metrics
Unlike carbon dioxide, which is relatively stable and by definition has a GWP value of one, methane is a live-fast, die-young greenhouse gas.
Methane traps very large quantities of heat in the first decade after it is released in to the atmosphere, but quickly breaks down.
After a decade, most emitted methane has reacted with ozone to form carbon dioxide and water. This carbon dioxide continues to heat the climate for hundreds or even thousands of years.
Emitting methane will always be worse than emitting the same quantity of carbon dioxide, no matter the time scale.
How much worse depends on the time period used to average out its effects. The most commonly used averaging period is 100 years, but this is not the only choice, and it is not wrong to choose another.
As a starting point, the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report from 2013 says methane heats the climate by 28 times more than carbon dioxide when averaged over 100 years and 84 times more when averaged over 20 years.
Many Sources of Methane
On top of these base rates of warming, there are other important considerations.
Fully considered using the 100-year GWP and including natural feedbacks, the IPCC's report says fossil sources of methane - most of the gas burned for electricity or heat for industry and houses - can be up to 36 times worse than carbon dioxide. Methane from other sources - such as livestock and waste - can be up to 34 times worse.
While some uncertainty remains, a well-regarded recent assessment suggested an upwards revision of fossil and other methane sources, that would increase their GWP values to around 40 and 38 times worse than carbon dioxide respectively.
These works will be assessed in the IPCC's upcoming Sixth Assessment Report, with the physical science contribution due in 2021.
While we should prefer the most up to date science at any given time, the choice to consider - or not - the full impact of methane and the choice to consider its impact over 20, 100 or 500 years is ultimately political, not scientific.
Undervaluing or misrepresenting the impact of methane presents a clear risk for policy makers. It is vital they pay attention to the advice of scientists and bodies such as the IPCC.
Undervaluing methane's impact in this way is not a risk for climate modellers because they rely on more direct assessments of the impact of gases than GWP.
Tipping Points
The idea of climate tipping points is that, at some point, we may change the climate so much that it crosses an irreversible threshold.
At such a tipping point, the world would continue to heat well beyond our capability to limit the harm.
There are many tipping points we should be aware of. But exactly where these are - and precisely what the implications of crossing one would be - is uncertain.
Unfortunately, the only way we can be sure of where these tipping points are is to cross them. The only thing we know for sure about them is that the impact on lives, livelihoods and the places we love would be beyond catastrophic if we did.
But we cannot ignore disturbing impacts of climate change that are already here.
For example, damage to the landscape from the Black Summer bushfires may be irreversible and this represents its own form of climate tipping point.
The scientific understanding of climate change goes well beyond simple metrics like GWP. Shuffling between metrics - such as 20-year or 100-year GWP - cannot avoid the fact our very best chance of avoiding ever-worsening climate harm is to massively reduce our reliance on coal, oil and gas, along with reducing our emissions from all other sources of greenhouse gas.
If we do this, we offer ourselves the best chance of avoiding crossing thresholds we can never return from.
Zebedee Nicholls is a PhD Researcher at the Climate & Energy College, University of Melbourne.
Tim Baxter is a Fellow - Melbourne Law School; Senior Researcher - Climate Council; Associate - Australian-German Climate and Energy College, University of Melbourne.
Disclosure statement: Zebedee Nicholls is affiliated with The University of Melbourne's Climate & Energy College. He is funded by the Australian Government via the Australian Government Research Training Program (RTP). Tim Baxter is employed by the Climate Council, a non-profit organisation providing independent, authoritative information on climate change and its solutions to the Australian public and has previously been employed under various Australia Research Council grants.
Reposted with permission from The Conversation.
- Methane Emissions From Onshore Oil and Gas Equivalent to 14 ... ›
- EPA Expected to Allow More Methane Emissions From Oil and Gas ... ›
- Methane Levels Dramatically Increase in U.S. - EcoWatch ›
A tornado tore through a city north of Birmingham, Alabama, Monday night, killing one person and injuring at least 30.
- Tornadoes and Climate Change: What Does the Science Say ... ›
- Tornadoes Hit Unusually Wide Swaths of U.S., Alarming Climate ... ›
- 23 Dead as Tornado Pummels Lee County, AL in Further Sign ... ›
EcoWatch Daily Newsletter
By David Konisky
On his first day in office President Joe Biden started signing executive orders to reverse Trump administration policies. One sweeping directive calls for stronger action to protect public health and the environment and hold polluters accountable, including those who "disproportionately harm communities of color and low-income communities."
Michael S. Regan, President Biden's nominee to lead the U.S. Environmental Protection Agency, grew up near a coal-burning power plant in North Carolina and has pledged to "enact an environmental justice framework that empowers people in all communities." NCDEQ
Trending
By Katherine Kornei
Clear-cutting a forest is relatively easy—just pick a tree and start chopping. But there are benefits to more sophisticated forest management. One technique—which involves repeatedly harvesting smaller trees every 30 or so years but leaving an upper story of larger trees for longer periods (60, 90, or 120 years)—ensures a steady supply of both firewood and construction timber.
A Pattern in the Rings
<p>The <a href="https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/coppice-standards-0" target="_blank">coppice-with-standards</a> management practice produces a two-story forest, said <a href="https://www.researchgate.net/profile/Bernhard_Muigg" target="_blank">Bernhard Muigg</a>, a dendrochronologist at the University of Freiburg in Germany. "You have an upper story of single trees that are allowed to grow for several understory generations."</p><p>That arrangement imprints a characteristic tree ring pattern in a forest's upper story trees (the "standards"): thick rings indicative of heavy growth, which show up at regular intervals as the surrounding smaller trees are cut down. "The trees are growing faster," said Muigg. "You can really see it with your naked eye."</p><p>Muigg and his collaborators characterized that <a href="https://ltrr.arizona.edu/about/treerings" target="_blank">dendrochronological pattern</a> in 161 oak trees growing in central Germany, one of the few remaining sites in Europe with actively managed coppice-with-standards forests. They found up to nine cycles of heavy growth in the trees, the oldest of which was planted in 1761. The researchers then turned to a historical data set — more than 2,000 oak <a href="https://eos.org/articles/podcast-discovering-europes-history-through-its-timbers" target="_blank" rel="noopener noreferrer">timbers from buildings and archaeological sites</a> in Germany and France dating from between 300 and 2015 — to look for a similar pattern.</p>A Gap of 500 Years
<p>The team found wood with the characteristic coppice-with-standards tree ring pattern dating to as early as the 6th century. That was a surprise, Muigg and his colleagues concluded, because the first mention of this forest management practice in historical documents occurred only roughly 500 years later, in the 13th century.</p><p>It's probable that forest management practices were not well documented prior to the High Middle Ages (1000–1250), the researchers suggested. "Forests are mainly mentioned in the context of royal hunting interests or donations," said Muigg. Dendrochronological studies are particularly important because they can reveal information not captured by a sparse historical record, he added.</p><p>These results were <a href="https://www.nature.com/articles/s41598-020-78933-8" target="_blank">published in December in <em>Scientific Reports</em></a>.</p><p>"It's nice to see the longevity and the history of coppice-with-standards," said <a href="https://www.teagasc.ie/contact/staff-directory/s/ian-short/" target="_blank">Ian Short</a>, a forestry researcher at Teagasc, the Agriculture and Food Development Authority in Ireland, not involved in the research. This technique is valuable because it promotes conservation and habitat biodiversity, Short said. "In the next 10 or 20 years, I think we'll see more coppice-with-standards coming back into production."</p><p>In the future, Muigg and his collaborators hope to analyze a larger sample of historic timbers to trace how the coppice-with-standards practice spread throughout Europe. It will be interesting to understand where this technique originated and how it propagated, said Muigg, and there are plenty of old pieces of wood waiting to be analyzed. "There [are] tons of dendrochronological data."</p><p><em><a href="mailto:katherine.kornei@gmail.com" target="_blank" rel="noopener noreferrer">Katherine Kornei</a> is a freelance science journalist covering Earth and space science. Her bylines frequently appear in Eos, Science, and The New York Times. Katherine holds a Ph.D. in astronomy from the University of California, Los Angeles.</em></p><p><em>This story originally appeared in <a href="https://eos.org/articles/tree-rings-reveal-how-ancient-forests-were-managed" target="_blank">Eos</a></em> <em>and is republished here as part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.</em></p>Earth's ice is melting 57 percent faster than in the 1990s and the world has lost more than 28 trillion tons of ice since 1994, research published Monday in The Cryosphere shows.
By Jewel Fraser
Noreen Nunez lives in a middle-class neighborhood that rises up a hillside in Trinidad's Tunapuna-Piarco region.