Quantcast

Mercury From Industrialized Nations Is Polluting the Arctic—Here’s How It Gets There

Science
Gates of the Arctic National Park, Alaska. Plants on the Arctic tundra absorb mercury from the air, then transfer it to soil when they die. Paxson Woelber / Flickr

By Daniel Obrist

Scientists have long understood that the Arctic is affected by mercury pollution, but know less about how it happens. Remote, cold and seemingly pristine, why is such an idyllic landscape so contaminated with this highly toxic metal?

I recently returned from a two-year research project in Alaska, where I led field research into this issue alongside fellow scientists from the University of Colorado; the University of Nevada's Desert Research Institute; the University of Toulouse and the Sorbonne University in France; and the Gas Technology Institute in Illinois.


Our work was the most comprehensive investigation to date of how mercury is deposited to the Arctic tundra, a vast northern ecosystem surrounding the Arctic Ocean. Our findings show that the gaseous form of mercury—emitted by coal-burning, mining and other industrial processes in the industrialized world—is being lofted into the region from thousands of miles away. In the Arctic, it is deposited onto tundra soils and ultimately runs off into ocean waters, threatening the region's wildlife and people.

Tracing Mercury's Pathways

Industrialized and developing nations emit about 2,000 tons of mercury into the atmosphere every year. Globally, the largest sources include emissions from small-scale and artisanal gold mining and coal-burning power plants.

Mercury emissions from the eight highest emitting industry sectors. Data for 2010 from the 2013 UNEP Global Mercury Assessment. Total estimated global anthropogenic mercury emissions are 1960 metric tons. USEPA

Mercury emissions from human activities take several forms that behave differently in the atmosphere Oxidized mercury, notated as Hg(II), generally settles or is rained out of the atmosphere close to emission sources. In contrast, gaseous elemental mercury or Hg(0), remains in the atmosphere for a long time and can travel around the globe.

In the Arctic, high levels of mercury are found in beluga whales, polar bears, seals, fish, eagles and other birds. This means that humans are also affected, particularly the Inuit, who rely on traditional hunting and fishing for food. Exposure to high levels of mercury over long periods can lead to neurological and cardiovascular problems. Scientists have been working for more than two decades to determine how mercury makes its way from industrialized countries to the Arctic.

From Atmosphere to Plants to Soil

From our observation site north of Alaska's Brooks Range, we determined that gaseous elemental mercury in the atmosphere is the dominant source of Arctic mercury. We calculated that it accounted for 70 percent of the mercury that finds its way into tundra soil. Previous studies focused mainly on deposition of airborne oxidized mercury. However, we estimate that oxidized mercury accounts for less than one-third of mercury deposition, and deposition by rain and snow for only 2 percent.

The next question is how gaseous mercury falls to the ground. We found that plants absorb it from the atmosphere in their leaves, much as they take up carbon dioxide. Then, when the plants shed leaves or die, the mercury they contain is deposited in soil.

This likely explains why runoff from tundra soil to the Arctic Ocean—which other researchers have estimated totals 50 to 85 tons per year—accounts for half to two-thirds of total mercury input into the Arctic Ocean. There, it can be converted to highly toxic organic methylmercury. As larger animals eat smaller animals, it biomagnifies through the aquatic food chain to harmful levels.

It could get worse. Our study did not examine the potential impact of global warming, but if climate change continues unchecked, warmer temperatures could destabilize mercury deposits in permafrost soils and allow even larger amounts to migrate into Arctic waters.

Cumulative atmospheric deposition of major mercury forms in the Arctic tundra. Obrist et al, Nature 547, 201–204 (July 13)

Fingerprinting Mercury Sources

We gathered our Arctic data year-round—a tall order in a place with long, dark winters when temperatures plunge to 40 degrees Fahrenheit below zero. Summers also pose challenges, especially with clouds of mosquitoes.

We used a lab set up on the tundra, which we visited regularly to calibrate and service our instruments and to collaborate with staff from Toolik Field Station, a research station operated by the University of Alaska at Fairbanks. Our instrumentation included measurements of all major forms of mercury in all environmental compartments, including the atmosphere, snow, rain, plants, lichen, mosses, and tundra soils and permafrost.

Many of our instruments allowed continuous measurements throughout the year via remote control. We needed to measure mercury levels year-round in order to develop annual mercury deposition mass balances—estimates of how much mercury was entering the Arctic from different sources and where it goes. In addition, my collaborators from France performed measurements of stable mercury isotopes—a novel and powerful technique that allowed us to fingerprint various sources of mercury in the environment.

Science to Support Global Action

Our research underscores the importance of the Minamata Convention on Mercury, the first global treaty designed to protect human health and the environment from this element's adverse effects. More than 120 countries, including the United States, have signed the convention, which took effect in August 2017.

The pact requires member nations to phase out or reduce mercury from products such as batteries, certain lightbulbs, cosmetics and pesticides. They also must control mercury air emissions from coal-fired power plants, waste incineration and related industrial processes, and reduce or eliminate mercury use in small-scale gold mining and chemical manufacturing.

Following on this study, I plan to continue investigating whether gaseous mercury is also a dominant source of pollution in other remote lands, and the mechanism of plant mercury uptake, which may be the main pathway for atmospheric mercury deposits to land. Scientists, regulators and policymakers need a better understanding of how the uptake of gaseous mercury in plants and soils is affecting the environment, including the world's forests. With the Minamata Convention as a framework, many nations will need this kind of scientific information to reduce toxic mercury hazards.

Reposted with permission from our media associate The Conversation.

Related Articles Around the Web
From Your Site Articles

    EcoWatch Daily Newsletter

    Sen. Michael Bennet (D-CO) speaks during the North American Building Trades Unions Conference at the Washington Hilton April 10, 2019 in Washington, DC. Zach Gibson / Getty Images

    Colorado senator and 2020 hopeful Michael Bennet introduced his plan to combat climate change Monday, in the first major policy rollout of his campaign. Bennet's plan calls for the establishment of a "Climate Bank," using $1 trillion in federal spending to "catalyze" $10 trillion in private spending for the U.S. to transition entirely to net-zero emissions by 2050.

    Read More Show Less
    Foto-Rabe / Pixabay

    When Trump's Environmental Protection Agency (EPA) announced its replacement for the Obama-era Clean Power Plan in August 2018, its own estimates said the reduced regulations could lead to 1,400 early deaths a year from air pollution by 2030.

    Now, the EPA wants to change the way it calculates the risks posed by particulate matter pollution, using a model that would lower the death toll from the new plan, The New York Times reported Monday. Five current or former EPA officials familiar with the plan told The Times that the new method would assume there is no significant health gain by lowering air pollution levels below the legal limit. However, many public health experts say that there is no safe level of particulate matter exposure, which has long been linked to heart and lung disease.

    Read More Show Less
    Sponsored
    A crate carrying one of the 33 lions rescued from circuses in Peru and Columbia is lifted onto the back of a lorry before being transported to a private reserve on April 30, 2016 in Johannesburg, South Africa. Dan Kitwood / Getty Images

    By Andrea Germanos

    Animal welfare advocates are praising soon-to-be introduced legislation in the U.S. that would ban the use of wild animals in traveling circuses.

    Read More Show Less
    A tornado Monday in Union City, Oklahoma. TicToc by Bloomberg / YouTube screenshot

    Extreme weather spawned 18 tornadoes across five states Monday, USA Today reported. Tornadoes were reported in Texas, Oklahoma, Kansas, Missouri and Arizona, but were not as dangerous as forecasters had initially feared, the Associated Press reported.

    Read More Show Less
    A woman walks in front of her water-logged home in Sriwulan village, Sayung sub-district of Demak regency, Central Java, Indonesia on Feb. 2, 2018. Siswono Toyudho / Anadolu Agency /Getty Images

    A new study has more than doubled the worst-case-scenario projection for sea level rise by the end of the century, BBC News reported Monday.

    Read More Show Less
    Sponsored
    Matt Cardy / Stringer / Getty Images

    The Guardian is changing the way it writes about environmental issues.

    Read More Show Less
    Blueberry yogurt bark. SEE D JAN / iStock / Getty Images Plus

    By Lizzie Streit, MS, RDN, LD

    Having nutritious snacks to eat during the workday can help you stay energized and productive.

    Read More Show Less
    A 2017 flood in Elk Grove, California. Florence Low / California Department of Water Resources

    By Tara Lohan

    It's been the wettest 12 months on record in the continental United States. Parts of the High Plains and Midwest are still reeling from deadly, destructive and expensive spring floods — some of which have lasted for three months.

    Mounting bills from natural disasters like these have prompted renewed calls to reform the National Flood Insurance Program, which is managed by Federal Emergency Management Agency and is now $20 billion in debt.

    Read More Show Less